Contextual Diffusion Image Post-processing Aids Clinical Applications

  • Vesna PrčkovskaEmail author
  • Magí Andorrà
  • Pablo Villoslada
  • Eloy Martinez-Heras
  • Remco Duits
  • David Fortin
  • Paulo Rodrigues
  • Maxime Descoteaux
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Diffusion weighted magnetic resonance imaging ( dMRI) and tractography have shown great potential for the investigation of the white mater architecture in-vivo, especially with the recent advancements by using higher order techniques to model the data. Many clinical applications ranging from neurodegenerative disorders, psychiatric disorders as well as pre-surgical planning employ diffusion imaging-based analysis as an addition to conventional MRI imaging. However, despite the promising outlook, dMRI tractography confronts many challenges that complicate its use in everyday clinical practice. Some of these challenges are low test-retest accuracy, poor quantification of tracts size, poor understanding of the biological basis of the dMRI parameters, inaccuracies in the geometry of the reconstructed streamlines (especially in complex areas with curvature, bifurcations, fanning, crossings), poor alignment with the neighboring diffusion profiles, among others. Recently developed contextual processing techniques including the one presented in this work, for enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. In this paper, we present a possibility in enabling HARDI tractography on the data acquired under limited diffusion tensor imaging (DTI) conditions and modeled by DTI. We enhance local features from the DTI field using operators that take ‘context’ information into account. Moreover, we demonstrate the potential of the contextual processing techniques in two important clinical applications: enhancing the streamlines in data acquired from patients with Multiple Sclerosis (MS) and pre-surgical planning for tumor resection. For the latter, we explore the possibilities of using this framework for more accurate neurosurgical planning and evaluate our findings with a feedback from a neurosurgeon.


Multiple Sclerosis Diffusion Tensor Imaging Optic Radiation Rigid Body Motion Orientation Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the FP7 Marie Curie Intra-European Fellowship, project acronym: ConnectMS, project number: 328060. Moreover, the research leading to the results of this article has received funding from the European Research Council under the European Community’s 7th Framework Program (FP7/2014) ERC grant agreement no. 335555.


  1. 1.
    Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010). doi:  10.1002/mrm.22365 Google Scholar
  2. 2.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
  3. 3.
    Ashburner, J., Friston, K.J.: Voxel-based morphometrythe methods. NeuroImage 11(6), 805–821 (2000). doi:
  4. 4.
    Barbieri, D., Citti, G., Sanguinetti, G., Sarti, A.: An uncertainty principle underlying the functional architecture of V1. J. Physiol. Paris (2012). doi: 10.1016/j.jphysparis.2012.03.001.
  5. 5.
    Barmpoutis, A., Vemuri, B.C., Howland, D., Forder, J.R.: Extracting tractosemas from a displacement probability field for tractography in dw-mri. In: Metaxas, D.N., Axel, L., Fichtinger, G., Szkely, G. (eds.) Medical Image Computing and Computer- Assisted Intervention (1). Lecture Notes in Computer Science, vol. 5241, pp. 9–16. Springer, Heidelberg (2008).
  6. 6.
    Basser, P.J., Mattiello, J., LeBihan, D.: {MR} Diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)Google Scholar
  7. 7.
    Ben-Yosef, G., Ben-Shahar, O.: Tangent bundle curve completion with locally connected parallel networks. Neural Comput. 24(12), 3277–3316 (2012).
  8. 8.
    Boscain, U., Charlot, G., Rossi, F.: Minimization of length and curvature on planar curves. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 200, pp. 1062–1067 (2009). doi: 10.1109/CDC.2009.5399749 Google Scholar
  9. 9.
    Castellano, A., Bello, L., Michelozzi, C., Gallucci, M., Fava, E., Iadanza, A., Riva, M., Casaceli, G., Falini, A.: Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro Oncol. 14(2), 192–202 (2011). doi: 10.1093/neuonc/nor188.
  10. 10.
    Chard, D.T., Jackson, J.S., Miller, D.H., Wheeler-Kingshott, C.A.: Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J. Magn. Reson. Imaging 32(1), 223–228 (2010). doi: 10.1002/jmri.22214.
  11. 11.
    Chirikjian, G.S.: Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups. CRC Press, Abingdon (2000)CrossRefGoogle Scholar
  12. 12.
    Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie groups. Classical Results and Geometric Methods. Applied and Numerical Harmonic Analysis, vol. 1. Birkhuser, Berlin (2009). Document avec exercices
  13. 13.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision 24(3), 307–326 (2006).
  14. 14.
    Comi, G., Rovaris, M., Leocani, L., Martinelli, V., Filippi, M.: Assessment of the damage of the cerebral hemispheres in MS using neuroimaging techniques. J. Neurol. Sci. 172(Suppl. 1), S63–S66 (2000)CrossRefGoogle Scholar
  15. 15.
    Creusen, E.J., Duits, R., Haije, T.C.J.D.: Numerical schemes for linear and non-linear enhancement of dw-mri. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 14–25. Springer, Berlin (2011).
  16. 16.
    Dela Haije, T., Duits, R., Tax, C.: Sharpening fibers in diffusion weighted mri via erosion. In: Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, Dagstuhl Seminar, vol. 11501. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)CrossRefGoogle Scholar
  18. 18.
    Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)CrossRefGoogle Scholar
  19. 19.
    Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2010). doi: 10.1007/s11263-010-0332-z.
  20. 20.
    Duits, R., Dela Haije, T.C.J., Creusen, E., Ghosh, A.: Morphological and linear scale spaces for fiber enhancement in DW-MRI. J. Math. Imaging Vision 46(3), 326–368 (2013). doi: 10.1007/s10851-012-0387-2.
  21. 21.
    Felsberg, M.: Adaptive filtering using channel representations. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol. 41, pp. 31–48. Springer, London (2012). doi: 10.1007/978-1-4471-2353-8_2.
  22. 22.
    Florack, L.: Codomain scale space and regularization for high angular resolution diffusion imaging. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ‘08, pp. 1–6 (2008). doi: 10.1109/CVPRW.2008.4562967
  23. 23.
    Franken, E.M.: Enhancement of crossing elongated structures in images. Ph.D. thesis, Eindhoven University of Technology (2008)Google Scholar
  24. 24.
    Gabilondo, I., Martinez-Lapiscina, E.H., Martinez-Heras, E., Fraga-Pumar, E., Llufriu, S., Ortiz, S., Bullich, S., Sepulveda, M., Falcon, C., Berenguer, J., Saiz, A., Sanchez-Dalmau, B., Villoslada, P.: Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann. Neurol. (2013). doi: 10.1002/ana.24030.
  25. 25.
    Gallichan, D., Andersson, J.L., Jenkinson, M., Robson, M.D., Miller, K.L.: Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence. Magn. Reson. Med. 64(2), 382–390 (2010)Google Scholar
  26. 26.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008). doi: 10.1371/journal.pbio.0060159.
  27. 27.
    Kezele, I., Descoteaux, M., Poupon, C., Poupon, F., Mangin, J.F.: Spherical wavelet transform for ODF sharpening. Med. Image Anal. 14(3), 332–342 (2010). doi: 10.1016/
  28. 28.
    Ling, J., Merideth, F., Caprihan, A., Pena, A., Teshiba, T., Mayer, A.R.: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies. Hum. Brain Mapp. 33(1), 50–62 (2012)Google Scholar
  29. 29.
    Llufriu, S., Martinez-Heras, E., Fortea, J., Blanco, Y., Berenguer, J., Gabilondo, I., Ibarretxe-Bilbao, N., Falcon, C., Sepulveda, M., Sola-Valls, N., Bargallo, N., Graus, F., Villoslada, P., Saiz, A.: Cognitive functions in multiple sclerosis: impact of gray matter integrity. Mult. Scler. 20(4), 424–432 (2014)CrossRefGoogle Scholar
  30. 30.
    Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, Burlington, MA (2000)Google Scholar
  31. 31.
    MomayyezSiahkal, P., Siddiqi, K.: 3D stochastic completion fields for mapping connectivity in diffusion mri. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 983–995 (2013).
  32. 32.
    Prčkovska, V., Duits, R.R., Vilanova, A., ter Haar Romenij, B.: Extrapolating fiber crossings from DTI data. Can we gain similar information as HARDI? In: Workshop Computational Diffusion MRI, MICCAI, Beijing (2010)Google Scholar
  33. 33.
    Reisert, M., Skibbe, H.: Left-invariant diffusion on the motion group in terms of the irreducible representations of so(3). CoRR abs/1202.5414 (2012).
  34. 34.
    Rodrigues, P., Duits, R., ter Haar Romenij, B., Bartroli, A.V.: Accelerated diffusion operators for enhancing DW-MRI. In: Visual Computing for Biology and Medicine (VCBM), Leipzig (2010)Google Scholar
  35. 35.
    Rodrigues, P., Prčkovska, V., Pullens, W., Strijkers, G., Vilanova, A., ter Haar Romeny, B.: Validating validators: an analysis of dwmri hardware and software phantoms. In: Proceedings 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Stockholm, p. 3964 (2010)Google Scholar
  36. 36.
    Seunarine, K.K., Alexander, D.C.: Multiple fibres: beyond the diffusion tensor. In: Behrens, T.E.B., Johansen-Berg, H. (eds). Diffusion MRI. Elsevier, London (2009)Google Scholar
  37. 37.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4), 1487–1505 (2006)CrossRefGoogle Scholar
  38. 38.
    Tehrani, M.A.: Diffusion tensor imaging study for multiple sclerosis in the optic radiation. Master’s thesis, Universitat Pumpeu Fabra, Health and Life Science Department (2012)Google Scholar
  39. 39.
    Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  40. 40.
    Tournier, J.D., Calamante, F., Connelly, A.: Mrtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012). doi: 10.1002/ima.22005.
  41. 41.
    Tristán-Vega, A., Aja-Fernández, S.: DWI filtering using joint information for DTI and HARDI. Med. Image Anal. 14(2), 205–218 (2010). doi: 10.1016/
  42. 42.
    Van Hecke, W., Leemans, A., De Backer, S., Jeurissen, B., Parizel, P.M., Sijbers, J.: Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: a simulation study. Hum. Brain Mapp. 31(1), 98–114 (2010)Google Scholar
  43. 43.
    Whitwell, J.L.: Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J. Neurosci. 29(31), 9661–9664 (2009)CrossRefGoogle Scholar
  44. 44.
    Wright, I.C., McGuire, P.K., Poline, J.B., Travere, J.M., Murray, R.M., Frith, C.D., Frackowiak, R.S., Friston, K.J.: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. NeuroImage 2(4), 244–252 (1995)CrossRefGoogle Scholar
  45. 45.
    Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vesna Prčkovska
    • 1
    Email author
  • Magí Andorrà
    • 2
  • Pablo Villoslada
    • 2
  • Eloy Martinez-Heras
    • 2
  • Remco Duits
    • 3
  • David Fortin
    • 4
  • Paulo Rodrigues
    • 5
  • Maxime Descoteaux
    • 4
  1. 1.Center for Neuroimmunology, Service of NeurologyHospital Clínic and Institut d’Investigació Biomèdica Augustí Pi I Sunyer (IDIBAPS)BarcelonaSpain
  2. 2.IDIBAPSBarcelonaSpain
  3. 3.IST/e, Eindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Université de SherbrookeSherbrookeCanada
  5. 5.Mint Labs S.L.BarcelonaSpain

Personalised recommendations