A Clustering Method for Identifying Regions of Interest in Turbulent Combustion Tensor Fields
Abstract
Production of electricity and propulsion systems involve turbulent combustion. Computational modeling of turbulent combustion can improve the efficiency of these processes. However, large tensor datasets are the result of such simulations; these datasets are difficult to visualize and analyze. In this work we present an unsupervised statistical approach for the segmentation, visualization and potentially the tracking of regions of interest in large tensor data. The approach employs a machine learning clustering algorithm to locate and identify areas of interest based on specified parameters such as strain tensor value. Evaluation on two combustion datasets shows this approach can assist in the visual analysis of the combustion tensor field.
Keywords
Mach Number Large Eddy Simulation Direct Numerical Simulation Tensor Field Turbulent CombustionNotes
Acknowledgements
This work was supported by NSF CBET-1250171 and NSF CAREER IIS-0952720.
References
- 1.Anderson, J.D.J.: Modern Compressible Flow: With Historical Perspective, 3rd edn. McGraw-Hill Science/Engineering/Math (2002)Google Scholar
- 2.Caban, J.J., Joshi, A., Rheingans, P.: Texture-based feature tracking for effective time-varying data visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1472–1479 (2007)CrossRefGoogle Scholar
- 3.Elmqvist, N., Stasko, J., Tsigas, P.: Datameadow: a visual canvas for analysis of large-scale multivariate data. In: VAST IEEE Symposium on Visual Analytics Science and Technology, Proceedings, pp. 187–194 (2007)Google Scholar
- 4.Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the 1st Conference on Visualization ’90 (VIS ’90), San Francisco, pp. 361–378. IEEE Computer Society Press, Los Alamitos (1990). http://dl.acm.org/citation.cfm?id=949531.949588
- 5.Ji, G., Shen, H.-W., Wenger, R.: Volume tracking using higher dimensional isosurfacing. In: Proceedings of the 14th IEEE Visualization, pp. 209–216 (2003)Google Scholar
- 6.Klippel, A., Hardisty, F., Li, R., Weaver, C.: Colour-enhanced star plot glyphs: can salient shape characteristics be overcome? Cartogr.: Int. J. Geogr. Inf. Geovis. 44(3), 217–231 (2009)Google Scholar
- 7.Lovely, D., Haimesy, R.: Shock detection from computational fluid dynamics results. In: Proceedings of the 14th AIAA Computational Fluid Dynamics Conference, 1:M2 (1999)Google Scholar
- 8.Ma, K.-L., Rosendale, J.V., Vermeer, W.: 3d shock wave visualization on unstructured grids. In: IEEE Symposium on Volume Visualization and Graphics, pp. 87–104 (1996)Google Scholar
- 9.Maries, A., Haque, M., Yilmaz, S., Nik, M., Marai, G.: Interactive exploration of stress tensors used in computational turbulent combustion. In: Laidlaw, D., Villanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields, pp. 137–156. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 10.McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets with application to reference matching. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’00, pp. 169–178. ACM Press, New York (2000)Google Scholar
- 11.Meyer, F., Bouthemy, P.: Region-based tracking using affine motion models in long image sequences. CVGIP: Image Underst. 60(2), 119–140 (1994)CrossRefGoogle Scholar
- 12.Muelder, C., Ma, K.-L.: Interactive feature extraction and tracking by utilizing region coherency. In: IEEE Pacific Visualization Symposium, PacificVis ’09, pp. 17–24 (2009)Google Scholar
- 13.Ozer, S., Wei, J., Silver, D., Ma, K.-L., Martin, P.: Group dynamics in scientific visualization. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 97–104 (2012)Google Scholar
- 14.Pagendarm, H.-G., Seitz, B.: An algorithm for detection and visualization of discontinuities in scientific data fields applied to flow data with shock waves. In: Scientific Visualization: Advanced Software Techniques, pp. 161–177 (1993)Google Scholar
- 15.Post, F.H., Vrolijk, B., Hauser, H., Larameeand, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graphics Forum 22(4), 775–792 (2003)CrossRefGoogle Scholar
- 16.Samtaney, R., Silver, D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolution. Computer 27(7), 20–27 (1994)CrossRefGoogle Scholar
- 17.Silver, D., Wang, X.: Volume tracking. In: Proceedings of Seventh Annual IEEE Visualization ’96, pp. 157–164 (1996)Google Scholar
- 18.Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans. Vis. Comput. Graph. 3(2), 129–141 (1997)CrossRefGoogle Scholar
- 19.Smith, S.M., Brady, J.M.: Asset-2: real-time motion segmentation and shape tracking. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 814–820 (1995)CrossRefGoogle Scholar
- 20.Tzeng, F.-Y., Ma, K.-L.: Intelligent feature extraction and tracking for visualizing large-scale 4d flow simulations. In: Proceedings of the ACM/IEEE SC 2005 Conference Supercomputing, p. 6 (2005)Google Scholar
- 21.Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85(411), 664–675 (1990)CrossRefGoogle Scholar