A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Fiber tracking is a common method for analyzing 3D tensor fields that arise from diffusion-weighted magnetic resonance imaging. This method can visualize, e.g., the structure of the brain’s white matter or that of muscle tissue. Fiber tracking results in dense, line-based datasets that are often too large to understand when shown directly. This chapter provides a survey of recent illustrative visualization approaches that address this problem. We group this work into techniques that improve the depth perception of fiber tracts, techniques that visualize additional data about the tracts, techniques that employ focus+context visualization, visualizations of fiber tract bundles, representations of uncertainty in the context of probabilistic fiber tracking, and techniques that rely on a spatially abstracted visualization of connectivity.

References

  1. 1.
    Anwander, A., Schurade, R., Hlawitschka, M., Scheuermann, G., Anderson, T.R., Knösche, T.R.: White matter imaging with virtual Klingler dissection. NeuroImage 47(Suppl. 1), S105 (2009). doi:10.1016/S1053-8119(09)70916-4
  2. 2.
    Appel, A., Rohlf, F.J., Stein, A.J.: The haloed line effect for hidden line elimination. ACM SIGGRAPH Comput. Graphics 13(3), 151–157 (1979). doi:10.1145/800249.807437 CrossRefGoogle Scholar
  3. 3.
    Bach, B., Dragicevic, P., Huron, S., Isenberg, P., Jansen, Y., Perin, C., Spritzer, A., Vuillemot, R., Willett, W., Isenberg, T.: Illustrative data graphics in 18th–19th century style: A case study. In: Posters at IEEE Visualization (2013). Extended abstract and posterGoogle Scholar
  4. 4.
    Behrens, T.E.J., Sotiropoulos, S.N., Jbabdi, S.: MR diffusion tractography. In: Johansen-Berg, H., Behrens, T.E.J. (eds.) Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy, 2nd edn., Chap. 19, pp. 429–451. Academic Press, San Diego (2014). doi:10.1016/B978-0-12-396460-1.00019-6 CrossRefGoogle Scholar
  5. 5.
    Berres, A.S., Goldau, M., Tittgemeyer, M., Scheuermann, G., Hagen, H.: Tractography in context: multimodal visualization of probabilistic tractograms in anatomical context. In: Proceedings of VCBM, pp. 9–16. Eurographics Association, Goslar (2012). doi:10.2312/VCBM/VCBM12/009-016
  6. 6.
    Berres, A.S., Goldau, M., Tittgemeyer, M., Scheuermann, G., Hagen, H.: Tractography in context: multimodal visualization of probabilistic tractograms in anatomical context. In: Posters of IEEE BioVis (2012)Google Scholar
  7. 7.
    Born, S., Jainek, W.M., Hlawitschka, M., Trantakis, C., Meixensberger, J., Bartz, D.: Multimodal visualization of DTI and fMRI data using illustrative methods. In: Bildverarbeitung für die Medizin, pp. 6–10. Springer, Berlin/Heidelberg (2009). doi:10.1007/978-3-540-93860-6_2
  8. 8.
    Böttger, J., Schäfer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Trans. Vis. Comput. Graphics 20(3), 471–480 (2014). doi:10.1109/TVCG.2013.114 CrossRefGoogle Scholar
  9. 9.
    Boukhelifa, N., Bezerianos, A., Isenberg, T., Fekete, J.D.: Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans. Vis. Comput. Graphics 18(12), 2769–2778 (2012). doi:10.1109/TVCG.2012.220 CrossRefGoogle Scholar
  10. 10.
    Brambilla, A., Carnecky, R., Peikert, R., Viola, I., Hauser, H.: Illustrative flow visualization: state of the art, trends and challenges. In: Eurographics State of the Art Reports, pp. 75–94. Eurographics Association, Goslar (2012). doi:10.2312/conf/EG2012/stars/075-094
  11. 11.
    Brecheisen, R., Platel, B., ter Haar Romeny, B.M., Vilanova, A.: Illustrative uncertainty visualization of DTI fiber pathways. In: EuroVis Posters (2011)Google Scholar
  12. 12.
    Brecheisen, R., Platel, B., ter Haar Romeny, B.M., Vilanova, A.: Illustrative uncertainty visualization of DTI fiber pathways. Vis. Comput. 29(4), 297–309 (2013). doi:10.1007/s00371-012-0733-9 CrossRefGoogle Scholar
  13. 13.
    Bruckner, S., Gröller, M.E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graphics 13(6), 1344–1351 (2007). doi:10.1109/TVCG.2007.70555 CrossRefGoogle Scholar
  14. 14.
    Bryson, S.: Virtual reality in scientific visualization. Commun. ACM 39(5), 62–71 (1996). doi:10.1145/229459.229467 CrossRefGoogle Scholar
  15. 15.
    Chen, W., Yan, Z., Zhang, S., Crow, J.A., Ebert, D.S., McLaughlin, R.M., Mullins, K.B., Cooper, R., Ding, Z., Liao, J.: Volume illustration of muscle from diffusion tensor images. IEEE Trans. Vis. Comput. Graphics 15(6), 1425–1432 (2009). doi:10.1109/TVCG.2009.203 CrossRefGoogle Scholar
  16. 16.
    Correa, C.D., Silver, D., Chen, M.: Illustrative deformation for data exploration. IEEE Trans. Vis. Comput. Graphics 13(6), 1320–1327 (2007). doi:10.1109/TVCG.2007.70565 CrossRefGoogle Scholar
  17. 17.
    Díaz-García, J.: Rapid halo-based illustrative visualization of brain fiber tracts. Master’s thesis, BarcelonaTech/Universitat Politècnica de Catalunya, Spain (2011). doi:2099.1/14366
  18. 18.
    Díaz-García, J., Vázquez, P.P.: Fast illustrative visualization of fiber tracts. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 7431, pp. 698–707. Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-33179-4_66
  19. 19.
    Eichelbaum, S., Goldau, M., Philips, S., Reichenbach, A., Schurade, R., Wiebel, A.: OpenWalnut: A new tool for multi-modal visualization of the human brain. In: Posters of EG VCBM (2010)Google Scholar
  20. 20.
    Eichelbaum, S., Hlawitschka, M., Wiebel, A., Scheuermann, G.: OpenWalnut – An open-source visualization system. In: Proceedings of 6th High-End Visualization Workshop, pp. 67–78. Lehmanns Media—LOB.de, Berlin (2010)Google Scholar
  21. 21.
    Eichelbaum, S., Wiebel, A., Hlawitschka, M., Anwander, A., Knösche, T.R., Scheuermann, G.: Visualization of effective connectivity of the brain. In: Proceedings of VMV, pp. 155–162. Eurographics Association, Goslar (2010). doi:10.2312/PE/VMV/VMV10/155-162
  22. 22.
    Eichelbaum, S., Hlawitschka, M., Scheuermann, G.: LineAO—Improved three-dimensional line rendering. IEEE Trans. Vis. Comput. Graphics 19(3), 433–445 (2013). doi:10.1109/TVCG.2012.142 CrossRefGoogle Scholar
  23. 23.
    Enders, F., Sauber, N., Merhof, D., Hastreiter, P., Nimsky, C., Stamminger, M.: Visualization of white matter tracts with wrapped streamlines. In: Proceedings of Visualization, IEEE Computer Society, Los Alamitos, pp. 51–58 (2005). doi:10.1109/VISUAL.2005.1532777
  24. 24.
    Everts, M.H., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Depth-dependent halos: Illustrative rendering of dense line data. IEEE Trans. Vis. Comput. Graphics 15(6), 1299–1306 (2009). doi:10.1109/TVCG.2009.138 CrossRefGoogle Scholar
  25. 25.
    Everts, M.H., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Illustrative line styles for flow visualization. In: Proceedings of Pacific Graphics, pp. 105–110. Eurographics Association, Goslar (2011). doi:10.2312/PE/PG/PG2011short/105-110
  26. 26.
    Everts, M.H., Begue, E., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Exploration of the brain’s white matter structure through visual abstraction and multi-scale local fiber tract contraction. IEEE Trans. Vis. Comput. Graphics 21 (2015, to appear). doi:10.1109/TVCG.2015.2403323)
  27. 27.
    Goldau, M., Hlawitschka, M.: Multi-modal visualization of probabilistic tractography. In: Visualization in Medicine and Life Sciences III. Springer, Berlin (2015)Google Scholar
  28. 28.
    Goldau, M., Wiebel, A., Gorbach, N.S., Melzer, C., Hlawitschka, M., Scheuermann, G., Tittgemeyer, M.: Fiber stippling: An illustrative rendering for probabilistic diffusion tractography. In: Proceedings of BioVis, pp. 23–30. IEEE Computer Society, Los Alamitos (2011). doi:10.1109/BioVis.2011.6094044
  29. 29.
    Gooch, A.A., Gooch, B., Shirley, P., Cohen, E.: A non-photorealistic lighting model for automatic technical illustration. In: Proceedings of SIGGRAPH, pp. 447–452. ACM, New York (1998). doi:10.1145/280814.280950
  30. 30.
    Hermosilla, P., Brecheisen, R., Vázquez, P.P., Vilanova, A.: Uncertainty visualization of brain fibers. In: Proceedings of CEIG, pp. 31–40. Eurographics Association, Goslar (2012). doi:10.2312/LocalChapterEvents/CEIG/CEIG12/031-040
  31. 31.
    Hlawitschka, M., Goldau, M., Wiebel, A., Heine, C., Scheuermann, G.: Hierarchical Poisson-disk sampling for fiber stipples. In: Visualization in Medicine and Life Sciences, pp. 19–23. Eurographics Association, Goslar (2013). doi:10.2312/PE.VMLS.VMLS2013.019-023
  32. 32.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graphics 12(5), 741–748 (2006). doi:10.1109/TVCG.2006.147 CrossRefGoogle Scholar
  33. 33.
    Jainek, W.: Illustrative visualization of brain structure and functional MRI data. Master’s thesis, Eberhard-Karls-Universität Tübingen, Germany (2007)Google Scholar
  34. 34.
    Jainek, W.M., Born, S., Bartz, D., Straßer, W., Fischer, J.: Illustrative hybrid visualization and exploration of anatomical and functional brain data. Comput. Graphics Forum 27(3), 855–862 (2008). doi:10.1111/j.1467-8659.2008.01217.x CrossRefGoogle Scholar
  35. 35.
    Jianu, D., Zhou, W., Demiralp, Ç., Laidlaw, D.H.: Visualizing spatial relations between 3D-DTI integral curves using texture patterns. In: IEEE Visualization Poster Compendium (2007)Google Scholar
  36. 36.
    Jianu, R., Demiralp, Ç., Laidlaw, D.H.: Exploring brain connectivity with two-dimensional neural maps. IEEE Trans. Vis. Comput. Graphics 18(6), 978–987 (2012). doi:10.1109/TVCG.2011.82 CrossRefGoogle Scholar
  37. 37.
    Johansen-Berg, H., Behrens, T.E.J. (eds.): Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy, 2nd edn. Academic Press, San Diego (2014). doi:10.1016/B978-0-12-396460-1.01001-5 Google Scholar
  38. 38.
    Klein, J., Ritter, F., Hahn, H.K., Rexilius, J., Peitgen, H.O.: Brain structure visualization using spectral fiber clustering. In: ACM SIGGRAPH 2006 Research Posters, New York, p. 168(1) (2006). doi:10.1145/1179622.1179816
  39. 39.
    Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comput. Graphics Forum 32(1), 49–74 (2013). doi:10.1111/j.1467-8659.2012.03231.x CrossRefGoogle Scholar
  40. 40.
    Laidlaw, D.H., Ahrens, E.T., Kremers, D., Avalos, M.J., Jacobs, R.E., Readhead, C.: Visualizing diffusion tensor images of the mouse spinal cord. In: Proceedings of Visualization, pp. 127–134. IEEE Computer Society, Los Alamitos (1998). doi:10.1109/VISUAL.1998.745294
  41. 41.
    Li, L., Shen, H.W.: Image-based streamline generation and rendering. IEEE Trans. Vis. Comput. Graphics 13(3), 630–640 (2007). doi:10.1109/TVCG.2007.1009 CrossRefGoogle Scholar
  42. 42.
    Mallo, O., Peikert, R., Sigg, C., Sadlo, F.: Illuminated lines revisited. In: Proceedings of Visualization, pp. 19–26. IEEE Computer Society, Los Alamitos (2005). doi:10.1109/VISUAL.2005.1532772
  43. 43.
    Margulies, D.S., Böttger, J., Watanabe, A., Gorgolewski, K.J.: Visualizing the human connectome. NeuroImage 80, 445–461 (2013). doi:10.1016/j.neuroimage.2013.04.111 CrossRefGoogle Scholar
  44. 44.
    Mittring, M.: Finding next gen: CryEngine 2. In: ACM SIGGRAPH Courses, New York, Chap. 28, pp. 97–121 (2007). doi:10.1145/1281500.1281671
  45. 45.
    Mori, S., van Zijl, P.C.: Fiber tracking: Principles and strategies – A technical review. NMR Biomed. 15(7–8), 468–480 (2002). doi:10.1002/nbm.781 CrossRefGoogle Scholar
  46. 46.
    Otten, R.J.G.: Illustrative rendering of white matter fiber bundles. Master’s thesis, TU Eindhoven, Department of Mathematics and Computer Science, the Netherlands (2009)Google Scholar
  47. 47.
    Otten, R., Vilanova, A., van de Wettering, H.M.M.: Illustrative white matter fiber bundles. Comput. Graphics Forum 29(3), 1013–1022 (2010). doi:10.1111/j.1467-8659.2009.01688.x CrossRefGoogle Scholar
  48. 48.
    Parker, G.J.M.: Probabilistic fiber tracking. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods, and Applications, Chap. 23. Oxford University Press, Oxford (2010). doi:10.1093/med/9780195369779.003.0023 Google Scholar
  49. 49.
    Peeters, T.H.J.M., Vilanova, A., Strijkers, G.J., ter Haar Romeny, B.M.: Visualization of the fibrous structure of the heart. In: Proceedings of VMV, pp. 309–316. Akademische Verlagsgesellschaft Aka GmbH, Berlin (2006)Google Scholar
  50. 50.
    Petrovic, V., Fallon, J., Kuester, F.: Visualizing whole-brain DTI tractography with GPU-based tuboids and LoD management. IEEE Trans. Vis. Comput. Graphics 13(6), 1488–1495 (2007). doi:10.1109/TVCG.2007.70532 CrossRefGoogle Scholar
  51. 51.
    Pfister, H., Kaynig, V., Botha, C.P., Bruckner, S., Dercksen, V.J., Hege, H.C., Roerdink, J.B.T.M.: Visualization in connectomics. Technical Report 1206.1428 [cs.GR], arXiv.org (2012)Google Scholar
  52. 52.
    Pfister, H., Kaynig, V., Botha, C.P., Bruckner, S., Dercksen, V.J., Hege, H.C., Roerdink, J.B.T.M.: Visualization in connectomics. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific Visualization, Mathematics and Visualization, pp. 221–245. Springer, London (2014). doi:10.1007/978-1-4471-6497-5_21 Google Scholar
  53. 53.
    Rautek, P., Bruckner, S., Gröller, E., Viola, I.: Illustrative visualization: New technology or useless tautology? ACM SIGGRAPH Comput. Graphics 42(3), 4:1–4:8 (2008). doi:10.1145/1408626.1408633
  54. 54.
    Reichenbach, A., Goldau, M., Hlawitschka, M.: Combined three-dimensional visualization of structural connectivity and cortex parcellation. In: Proceedings of VMV, pp. 71–78. Eurographics Association, Goslar (2014). doi:10.2312/vmv.20141278
  55. 55.
    Rieder, C., Brachmann, C., Hofmann, B., Klein, J., Köhn, A., Ojdanic, D., Schumann, C., Weiler, F., Hahn, H.K.: Interactive visualization of neuroanatomical data for a hands-on multimedia exhibit. In: Proceedings of VMLS, pp. 37–41. Eurographics Association, Goslar (2013). doi:10.2312/PE.VMLS.VMLS2013.037-041
  56. 56.
    Röttger, D., Merhof, D., Müller, S.: The BundleExplorer: A focus and context rendering framework for complex fiber distributions. In: Proceedings of VCBM, pp. 1–8. Eurographics Association, Goslar (2012). doi:10.2312/VCBM/VCBM12/001-008
  57. 57.
    Schott, M., Martin, T., Grosset, A.V.P., Brownlee, C., Höllt, T., Brown, B.P., Smith, S.T., Hansen, C.D.: Combined surface and volumetric occlusion shading. In: Proceedings of PacificVis, pp. 169–176. IEEE, Los Alamitos (2012). doi:10.1109/PacificVis.2012.6183588
  58. 58.
    Schott, M., Martin, T., Grosset, A.V., Smith, S., Hansen, C.D.: Ambient occlusion effects for combined volumes and tubular geometry. IEEE Trans. Vis. Comput. Graphics 19(6), 913–926 (2013). doi:10.1109/TVCG.2012.306 CrossRefMATHGoogle Scholar
  59. 59.
    Schultz, T., Sauber, N., Anwander, A., Theisel, H., Seidel, H.P.: Virtual Klingler dissection: Putting fibers into context. In: Proceedings of EuroVis, pp. 1063–1070. Eurographics Association, Goslar (2008). doi:10.1111/j.1467-8659.2008.01243.x
  60. 60.
    Shafii, S., Obermaier, H., Kolář, V., Hlawitschka, M., Garth, C., Hamann, B., Joy, K.I.: Illustrative rendering of vortex cores. In: Proceedings of EuroVis, pp. 61–65. Eurographics Association, Goslar (2013). doi:10.2312/PE.EuroVisShort.EuroVisShort2013.061-065
  61. 61.
    Svetachov, P., Everts, M.H., Isenberg, T.: DTI in context: Illustrating brain fiber tracts in situ. Comput. Graphics Forum 29(3), 1024–1032 (2010). doi:10.1111/j.1467-8659.2009.01692.x CrossRefGoogle Scholar
  62. 62.
    Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Graphics 12(5), 1237–1244 (2006). doi:10.1109/TVCG.2006.115 CrossRefGoogle Scholar
  63. 63.
    Viola, I., Gröller, M.E., Hadwiger, M., Bühler, K., Preim, B., Sousa, M.C., Ebert, D., Stredney, D.: Illustrative visualization. In: IEEE Visualization Tutorials, Chap. 4 IEEE Computer Society, Los Alamitos (2005)Google Scholar
  64. 64.
    Wenger, A., Keefe, D.F., Zhang, S., Laidlaw, D.H.: Interactive volume rendering of thin thread structures within multivalued scientific data sets. IEEE Trans. Vis. Comput. Graphics 10(6), 664–672 (2004). doi:10.1109/TVCG.2004.46 CrossRefGoogle Scholar
  65. 65.
    Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., Slingsby, A.: Sketchy rendering for information visualization. IEEE Trans. Vis. Comput. Graphics 18(12), 2749–2758 (2012). doi:10.1109/TVCG.2012.262 CrossRefGoogle Scholar
  66. 66.
    Zhang, S., Demiralp, Ç., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans. Vis. Comput. Graphics 9(4), 454–462 (2003). doi:10.1109/TVCG.2003.1260740 CrossRefGoogle Scholar
  67. 67.
    Zhang, S., Laidlaw, D.H., Kindlmann, G.: Diffusion tensor MRI visualization. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, Chap. 16, pp. 327–340. Elsevier, Oxford (2004). doi:10.1016/B978-012387582-2/50017-4 Google Scholar
  68. 68.
    Zhukov, L., Barr, A.H.: Heart-muscle fiber reconstruction from diffusion tensor MRI. In: Proceedings of Visualization, pp. 597–602. IEEE Computer Society, Los Alamitos (2003). doi:10.1109/VISUAL.2003.1250425
  69. 69.
    Zhukov, L., Barr, A.H.: Oriented tensor reconstruction. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, Chap. 15, pp. 313–326. Elsevier, Oxford (2004). doi:10.1016/B978-012387582-2/50017-4 Google Scholar
  70. 70.
    Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Rendering Techniques, pp. 45–55. Springer, Vienna (1998). doi:10.1007/978-3-7091-6453-2_5
  71. 71.
    Zöckler, M., Stalling, D., Hege, H.C.: Interactive visualization of 3D-vector fields using illuminated stream lines. In: Proceedings of Visualization, pp. 107–113. IEEE Computer Society, Los Alamitos (1996). doi:10.1109/VISUAL.1996.567777

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Inria-SaclayOrsayFrance

Personalised recommendations