Ore Polynomials in Sage

  • Manuel Kauers
  • Maximilian Jaroschek
  • Fredrik Johansson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8942)


We present a Sage implementation of Ore algebras. The main features for the most common instances include basic arithmetic and actions; GCRD and LCLM; D-finite closure properties; natural transformations between related algebras; guessing; desingularization; solvers for polynomials, rational functions and (generalized) power series. This paper is a tutorial on how to use the package.


Differential Operator Computer Algebra System Closure Property Fibonacci Number Base Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramov, S.A., Le, H.Q., Li, Z.: OreTools: a computer algebra library for univariate Ore polynomial rings. Technical report CS-2003-12, University of Waterloo (2003)Google Scholar
  2. 2.
    Sergei, S.A., van Hoeij, M.: Integration of solutions of linear functional equations. Integr. Transforms Spec. Funct. 9, 3–12 (1999)Google Scholar
  3. 3.
    Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chyzak, F.: Fonctions holonomes en calcul formel. Ph.D. thesis, INRIA Rocquencourt (1998)Google Scholar
  5. 5.
    Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26, 187–227 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hebisch, W., Rubey, M.: Extended rate, more GFUN. J. Symbolic Comput. 46(8), 889–903 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Jaroschek, M.: Improved polynomial remainder sequences for Ore polynomials. J. Symbolic Comput. 58, 64–76 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Jaroschek, M., Kauers, M., Chen, S., Singer, M.F.: Desingularization explains order-degree curves for Ore operators. In: Kauers, M. (ed.) Proceedings of ISSAC’13, pp. 157–164 (2013)Google Scholar
  9. 9.
    Kauers, M.: Guessing handbook. Technical report 09–07, RISC-Linz (2009)Google Scholar
  10. 10.
    Kauers, M.: The holonomic toolkit. In: Blümlein, J., Schneider, C. (eds.) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation, pp. 119–144. Springer, Vienna (2013)CrossRefGoogle Scholar
  11. 11.
    Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D. thesis, RISC-Linz, Johannes Kepler Universität Linz (2009)Google Scholar
  12. 12.
    Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report 10–01, RISC Report Series, University of Linz, Austria, January 2010Google Scholar
  13. 13.
    Li, Z.: A Subresultant theory for linear differential, linear difference, and Ore polynomials, with applications. Ph.D. thesis, RISC-Linz (1996)Google Scholar
  14. 14.
    Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. Master’s thesis, J. Kepler University, Linz, August 1996Google Scholar
  15. 15.
    Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Mathe. Softw. 20(2), 163–177 (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Stein, W.A., et al.: Sage Mathematics Software (Version 5.9). The Sage Development Team (2013).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manuel Kauers
    • 1
  • Maximilian Jaroschek
    • 2
  • Fredrik Johansson
    • 3
  1. 1.Research Institute for Symbolic Computation (RISC)Johannes Kepler University (JKU)LinzAustria
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.INRIA Bordeaux-Sud-Ouest & IMBTalence cedexFrance

Personalised recommendations