A Dynamic Logic for Every Season

  • Alexandre MadeiraEmail author
  • Renato Neves
  • Manuel A. Martins
  • Luís S. Barbosa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8941)


This paper introduces a method to build dynamic logics with a graded semantics. The construction is parametrized by a structure to support both the spaces of truth and of the domain of computations. Possible instantiations of the method range from classical (assertional) dynamic logic to less common graded logics suitable to deal with programs whose transitional semantics exhibits fuzzy or weighted behaviour. This leads to the systematic derivation of program logics tailored to specific program classes.


Residuated Lattice Label Transition System Dynamic Logic European Regional Development Fund Propositional Dynamic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckert, B.: A dynamic logic for the formal verification of java card programs. In: Attali, I., Jensen, T. (eds.) JavaCard 2000. LNCS, vol. 2041, pp. 6–24. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1–2), 69–86 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Furusawa, H.: The categories of kleene algebras, action algebras and action lattices are related by adjunctions. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003/Kleene-Algebra Ws 2003. LNCS, vol. 3051, pp. 124–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Goble, S.F.: Grades of modality. Logique et Analyse 13, 323–334 (1970)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 9. Research Studies Press (2001)Google Scholar
  6. 6.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)Google Scholar
  7. 7.
    Kozen, D.: On action algebras. manuscript in: Logic and Flow of Information, Amsterdam (1991)Google Scholar
  8. 8.
    Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kozen, D.: A completeness theorem for kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lopes, B., Benevides, M.R.F., Haeusler, E.H.: Propositional dynamic logic for petri nets. Logic Journal of the IGPL 22(5), 721–736 (2014)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mürk, O., Larsson, D., Hähnle, R.: KeY-C: a tool for verification of c programs. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 385–390. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer (2010)Google Scholar
  14. 14.
    Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Logical Methods in Computer Science 8(4) (2012)Google Scholar
  15. 15.
    Pratt, V.: Action logic and pure induction. In: van Eijck, J. (ed.) Logics in AI. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  16. 16.
    van der Hoek, W.: On the semantics of graded modalities. Journal of Applied Non-Classical Logics 2(1) (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexandre Madeira
    • 1
    Email author
  • Renato Neves
    • 1
  • Manuel A. Martins
    • 2
  • Luís S. Barbosa
    • 1
  1. 1.HASLab INESC TECUniversity MinhoBragaPortugal
  2. 2.CIDMA - Department MathematicsUniversity AveiroAveiroPortugal

Personalised recommendations