Model-Driven Engineering in the Heterogeneous Tool Set

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8941)

Abstract

We have defined a unified environment that allows formal verification within the Model-Driven Engineering (MDE) paradigm using heterogeneous verification approaches. The environment is based on the Theory of Institutions, which provides a sound basis for representing MDE elements and a way for specifying translations from these elements to other logical domains used for verification, such that formal experts can choose the domain in which they are more skilled to address a formal proof. In this paper we present how this environment can be supported in practice by the Heterogeneous Tool Set (Hets). We define semantic-preserving translations from the MDE elements to the core language of Hets, and we also show how it is possible to move from it to other logics, both to supplement the original specification with other verification properties and to perform a heterogeneous verification.

Keywords

Verification Formal methods Model-Driven Engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Calegari, D., Szasz, N.: Verification of model transformations: A survey of the state-of-the-art. ENTCS 292, 5–25 (2013)Google Scholar
  3. 3.
    Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Technical report, Universitaet Bremen, Habilitation thesis (2005)Google Scholar
  4. 4.
    Calegari, D., Szasz, N.: Institution-based semantics for MOF and QVT-relations. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 34–50. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Mossakowski, T., Haxthausen, A.E., Sannella, D., Tarlecki, A.: Casl - the common algebraic specification language: Semantics and proof theory. Computers and Artificial Intelligence 22, 285–321 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    OMG: Meta Object Facility (MOF) 2.0 Core Specification. Specification Version 2.0, Object Management Group (2003)Google Scholar
  8. 8.
    OMG: Object Constraint Language. Formal Specification Version 2.2, Object Management Group (2010)Google Scholar
  9. 9.
    OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final Adopted Specification Version 1.1, Object Management Group (2009)Google Scholar
  10. 10.
    Calegari, D.: Heterogeneous Verification of Model Transformations. PhD thesis, Universidad de la República - PEDECIBA (2014). https://www.fing.edu.uy/inco/pedeciba/bibliote/tesis/tesisd-calegari.pdf
  11. 11.
    Codescu, M.: Generalized theoroidal institution comorphisms. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 88–101. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification of model transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 18–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Lano, K., Rahimi, S.K.: Model transformation specification and design. Advances in Computers 85, 123–163 (2012)CrossRefGoogle Scholar
  14. 14.
    Shan, L., Zhu, H.: Semantics of metamodels in UML. In: Chin, W., Qin, S. (eds.) TASE 2009, pp. 55–62. IEEE Computer Society (2009)Google Scholar
  15. 15.
    Bidoit, M., Hennicker, R., Tort, F., Wirsing, M.: Correct realizations of interface constraints with OCL. In: France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 399–415. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain specific languages – a craftsman’s approach for the railway domain using Casl. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theor. Comput. Sci. 285, 289–318 (2002)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Giménez, M., Moscato, M.M., Pombo, C.G.L., Frias, M.F.: Heterogenius: a framework for hybrid analysis of heterogeneous software specifications. In: Aguirre, N., Ribeiro, L. (eds.) LAFM 2013. EPTCS, Vol. 139, pp. 65–70 (2014)Google Scholar
  19. 19.
    Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Montanari Fest. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universidad de la RepúblicaMontevideoUruguay
  2. 2.Otto-von-Guericke University MagdeburgMagdeburgGermany
  3. 3.Facultad de IngenieríaUniversidad ORT UruguayMontevideoUruguay

Personalised recommendations