Advertisement

Completeness and Decidability Results for Hybrid(ised) Logics

  • Renato NevesEmail author
  • Manuel A. Martins
  • Luís S. Barbosa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8941)

Abstract

Adding to the modal description of transition structures the ability to refer to specific states, hybrid(ised) logics provide an interesting framework for the specification of reconfigurable systems. The qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top of whatever specification logic is used to model software configurations, the elements of an hybrid language, including nominals and modalities. In such a context, this paper shows how a calculus for a hybrid(ised) logic can be generated from a calculus of the base logic and that, moreover, it preserves soundness and completeness. A second contribution establishes that hybridising a decidable logic also gives rise to a decidable hybrid(ised) one. These results pave the way to the development of dedicated proof tools for such logics used in the design of reconfigurable systems.

Keywords

Institutions Hybrid logic Decidability Completeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics. Elsevier (2006)Google Scholar
  2. 2.
    Baltazar, P.: Probabilization of logics: Completeness and decidability. Logica Universalis 7(4), 403–440 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Braüner, T.: Proof-Theory of Propositional Hybrid Logic. Hybrid Logic and its Proof-Theory (2011)Google Scholar
  4. 4.
    Caleiro, C., Sernadas, C., Sernadas, A.: Parameterisation of logics. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 48–63. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  6. 6.
    Diaconescu, R.: Institutional semantics for many-valued logics. Fuzzy Sets Syst. 218, 32–52 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Diaconescu, R., Stefaneas, P.: Ultraproducts and possible worlds semantics in institutions. Theor. Comput. Sci. 379(1–2), 210–230 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 44–72. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  9. 9.
    Finger, M., Gabbay, D.: Adding a temporal dimension to a logic system. Journal of Logic, Language and Information 1(3), 203–233 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987 and CFLP 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987)Google Scholar
  12. 12.
    Hoffmann, G., Areces, C.: Htab: a terminating tableaux system for hybrid logic. Electr. Notes Theor. Comput. Sci. 231, 3–19 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Madeira, A., Faria, J.M., Martins, M.A., Barbosa, L.S.: Hybrid specification of reactive systems: an institutional approach. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 269–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 283–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Hybridisation at work. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 340–345. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Rasga, J., Sernadas, A., Sernadas, C.: Importing logics: Soundness and completeness preservation. Studia Logica 101(1), 117–155 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Renato Neves
    • 1
    Email author
  • Manuel A. Martins
    • 2
  • Luís S. Barbosa
    • 1
  1. 1.HASLab INESC TEC and University of MinhoBragaPortugal
  2. 2.CIDMA - Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations