Advertisement

Macroevolution pp 301-327 | Cite as

Speciation: Expanding the Role of Biogeography and Niche Breadth in Macroevolutionary Theory

  • Alycia L. Stigall
Chapter
Part of the Interdisciplinary Evolution Research book series (IDER, volume 2)

Abstract

Understanding the processes that control speciation is critical to building a comprehensive macroevolutionary synthesis. A variety of theoretical constructs have been proposed to explain various differential speciation patterns observed in the fossil record, such as higher rates of speciation among specialist versus generalist taxa. Most of these explanations, however, rely on only one or two explanatory variables and may be overly simplistic. Developing a more complete understanding of speciation processes requires a broader synthesis of multiple explanatory factors including the role of external factors such as climatic and tectonics, impact of ecosystem-level processes, relative niche breadth, and relative stability of species’ niches during environmental change (biotic and abiotic). This chapter explores the relationship between biogeography, ecological niches, and speciation in a series of case studies focused on Paleozoic (Late Ordovician and Late Devonian) shallow marine brachiopods and bivalves and Cenozoic (Neogene) horses of North America.

Keywords

Ecological niche model Phylogeny Paleontology Invasion Ecology 

Notes

Acknowledgements

Thanks to Emanuele Serrelli for constructive comments on an earlier version of this paper and to the editors for the invitation to submit to this volume. Many students, particularly Hannah Brame, Nicole Dudei, Kaitlin Clare Maguire, Richard Malizia, Robert Swisher, Bradley Walls, and Davey Wright contributed to the development of the datasets described in the case studies. This research was supported by NSF EAR-0922067 and is a contribution to International Geoscience Programme (IGCP) 591.

References

  1. Allmon WD (2013) Species, speciation and palaeontology up to the modern synthesis: persistent themes and unanswered questions. Palaeontology 56(6):1199–1223. doi: 10.1111/pala.12054 CrossRefGoogle Scholar
  2. Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30(4):522–542CrossRefGoogle Scholar
  3. Botts EA, Erasmus BFN, Alexander GJ, Lawlor J (2013) Small range size and narrow niche breadth predict range contractions in South African frogs. Glob Ecol Biogeogr 22(5):567–576. doi: 10.1111/geb.12027 CrossRefGoogle Scholar
  4. Brame H-MR, Stigall AL (2014) Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Paleobiology 40(1):70–90 doi: 10.1666/13035 CrossRefGoogle Scholar
  5. Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  6. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623CrossRefGoogle Scholar
  7. Congreve CR, Lieberman BS (2008) Phylogenetic and biogeographic analysis of Ordovician homalonotid trilobites. Open Paleontol J 1:24–32CrossRefGoogle Scholar
  8. Congreve CR, Lieberman BS (2010) Phylogenetic and biogeographic analysis of deiphonine trilobites. J Paleontol 84(1):128–136CrossRefGoogle Scholar
  9. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  10. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886. doi: 10.1080/10635150701701083 CrossRefPubMedGoogle Scholar
  11. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  12. Dudei NL, Stigall AL (2010) Using ecological niche modeling to assess biogeographic and niche response of brachiopod species to the Richmondian invasion (Late Ordovician) in the Cincinnati Arch. Palaeogeogr Palaeoclimatol Palaeoecol 296(1–2):28–43. doi: 10.1016/j.palaeo.2010.06.012 CrossRefGoogle Scholar
  13. Eldredge N (1996) Hierarchies in macroevolution. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. Chicago University Press, Chicago, pp 42–61Google Scholar
  14. Eldredge N (2003) The sloshing bucket: how the physical realm controls evolution. In: Crutchfield J, Schuster P (eds) Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function: exploring the interplay of selection, accident, neutrality, and function. Oxford University Press, New York, pp 3–32Google Scholar
  15. Eldredge N (2007) Hierarchies and the sloshing bucket: toward the unification of evolutionary biology. Evol Educ Outreach 1(1):10–15. doi: 10.1007/s12052-007-0007-6
  16. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper, and Co., San Fransisco, pp 82–115Google Scholar
  17. Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller WI (2005) The dynamics of evolutionary stasis. Paleobiology 31(2):133–145CrossRefGoogle Scholar
  18. Eronen JT, Evans AR, Fortelius M, Jernvall J (2010) The impact of regional climate on the evolution of mammals: a case study using fossil horses. Evolution 64(2):398–408CrossRefPubMedGoogle Scholar
  19. Fernández MH, Vrba ES (2005) Body size, biomic specialization and range size of African large mammals. J Biogeogr 32(7):1243–1256CrossRefGoogle Scholar
  20. Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fennica 180:1–76Google Scholar
  21. Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737CrossRefPubMedGoogle Scholar
  22. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  23. Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2):115–151Google Scholar
  24. Holland SM (1997) Using time/environment analysis to recognize faunal events in the Upper Ordovician of the Cincinnati Arch. In: Brett CE, Baird GC (eds) Paleontological event horizons: ecological and evolutionary implications. Columbia University Press, New York, pp 309–334Google Scholar
  25. Holland SM, Patzkowsky ME (1996) Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the Eastern United States. Geol Soc Am Spec Pap 306:117–129Google Scholar
  26. Holland SM, Patzkowsky ME (2007) Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian series (Upper Ordovician), Cincinnati, Ohio Region. U.S. Palaios 22(4):392–407. doi: 10.2110/palo.2006.p06-066r CrossRefGoogle Scholar
  27. Hulbert RC Jr (1993) Taxonomic evolution in North American neogene horses (subfamily Equinae): the rise and fall of and adaptive radiation. Paleobiology 19(2):216–234Google Scholar
  28. Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524CrossRefGoogle Scholar
  29. Jackson JBC (1974) Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. Am Nat 108:541–560CrossRefGoogle Scholar
  30. Kammer TW, Baumiller TK, Ausich WI (1997) Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25(3):219–222CrossRefGoogle Scholar
  31. Levin LA (2003) Oxygen minimum zone bethos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45Google Scholar
  32. Lieberman BS (1997) Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology 25(11):1039–1042CrossRefGoogle Scholar
  33. Lieberman BS (2000) Paleobiogeography: using fossils to study global change, plate tectonics, and evolution. Top Geobiol 1:1–208Google Scholar
  34. Lieberman BS (2003) Biogeography of the Trilobita during the Cambrian radiation; deducing geological processes from Trilobite evolution. In: Lane PD, Siveter DJ, Fortey RA (eds) Trilobites and their relatives, vol 70. Special Papers in Palaeontology, pp 59–72Google Scholar
  35. Lieberman BS (2012) Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evol Biol 39(2):181–191CrossRefGoogle Scholar
  36. Lieberman BS, Eldredge N (1996) Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology, pp 66–79Google Scholar
  37. Lockwood J, Hoopes M, Marchetti M (2009) Invasion ecology. Wiley, New YorkGoogle Scholar
  38. MacFadden BJ (1984) Systematics and phylogeny of Hipparion, Neohipparion, Nannippus, and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the new world. Bull Am Museum Nat Hist 179:1–195Google Scholar
  39. Maguire KC, Stigall AL (2008) Paleobiogeography of Miocene equinae of North America: a phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeogr Palaeoclimatol Palaeoecol 267(3–4):175–184. doi: 10.1016/j.palaeo.2008.06.014 CrossRefGoogle Scholar
  40. Maguire KC, Stigall AL (2009) Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene equinae in the great plains. Paleobiology 35(4):587–611doi: 10.1666/0094-8373-35.4.587 CrossRefGoogle Scholar
  41. Malizia RW, Stigall AL (2011) Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian invasion. Palaeogeogr Palaeoclimatol Palaeoecol 311(3–4):154–170. doi: 10.1016/j.palaeo.2011.08.017 CrossRefGoogle Scholar
  42. Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New YorkGoogle Scholar
  43. McGhee GR (1996) The Late Devonian mass extinctions: the Frasnian/Famennian crisis. Columbia University Press, New YorkGoogle Scholar
  44. McGhee GR (2013) The legacy of the Devonian extinctions: when the invasion of land failed. Columbia University Press, New YorkGoogle Scholar
  45. McGhee GR, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270. doi: 10.1016/j.palaeo.2012.12.019 CrossRefGoogle Scholar
  46. McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeoclimatol Palaeoecol 211(3):289–297CrossRefGoogle Scholar
  47. Meyer DL, Davis RA (2009) A sea without fish: life in the Ordovician Sea of the Cincinnati Region. Indiana University Press, BloomingtonGoogle Scholar
  48. O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  49. Patzkowsky ME, Holland SM (2007) Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33(2):295–309CrossRefGoogle Scholar
  50. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonGoogle Scholar
  51. Pievani T, Serrelli E (2013) Bucket thinking: the future framework for evolutionary explanation. Contrastes Revista internacional de filosofia - Suplementos 18:389–405Google Scholar
  52. Prado JL, Alberdi MT (1996) A cladistic analysis of the horses of the tribe Equini. Palaeontology 39(3):663–680Google Scholar
  53. Rode AL (2004) Phylogenetic revision of Leptodesma (Leiopteria) (Devonian: Bivalvia). Postilla 229:1–28Google Scholar
  54. Rode AL, Lieberman BS (2002) Phylogenetic and biogeographic analysis of Devonian phyllocarid crustaceans. J Paleontol 76(2):271–286CrossRefGoogle Scholar
  55. Rode AL, Lieberman BS (2004) Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeogr Palaeoclimatol Palaeoecol 211(3–4):345–359. doi: 10.1016/j.palaeo.2004.05.013 CrossRefGoogle Scholar
  56. Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci US A 108(14):5708–5711CrossRefGoogle Scholar
  57. Simpson GG (1944) Tempo and mode in evolution, vol 15. Columbia University Press, New YorkGoogle Scholar
  58. Simpson GG (1951) Horses: The story of the horse family in the modern world and through sixty million years of history. Oxford University Press, New YorkGoogle Scholar
  59. Stanley SM (1990) The general correlation between rate of specation and rate of extinction: fortuitious causal linkages. In: Ross RM, Allmon WD (eds) Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago, pp 103–127Google Scholar
  60. Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86CrossRefGoogle Scholar
  61. Stigall AL (2008) Tracking species in space and time: assessing the relationships between paleobiogeography, paleoecology, and macroevolution. Paleontol Soc Pap 14:139–154 doi: 10.1111/pala.12003 Google Scholar
  62. Stigall AL (2010a) Invasive species and biodiversity crises: testing the link in the Late Devonian. PLoS One 5(12):e15584. doi: 10.1371/journal.pone.0015584.g001 CrossRefPubMedCentralPubMedGoogle Scholar
  63. Stigall AL (2010b) Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian invasion in the type-Cincinnatian (Late Ordovician, Cincinnati region). Palaeontol Electronica 13(1):5A–19Google Scholar
  64. Stigall AL (2011) Application of niche modelling to analyse biogeographic patterns in Palaeozoic brachiopods: evaluating niche stability in deep time. Memoirs Assoc Australas Palaeontologists 41:229–255Google Scholar
  65. Stigall AL (2012a) Invasive species and evolution. Evol Educ Outreach 5(4):526–533. doi: 10.1007/s12052-012-0410-5
  66. Stigall AL (2012b) Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22(1):4–9. doi: 10.1130/g128a.1 CrossRefGoogle Scholar
  67. Stigall AL (2012c) Using ecological niche modelling to evaluate niche stability in deep time. J Biogeogr 39(4):772–781. doi: 10.1111/j.1365-2699.2011.02651.x CrossRefGoogle Scholar
  68. Stigall AL (2013) Analysing links between biogeography, niche stability and speciation: the impact of complex feedbacks on macroevolutionary patterns. Palaeontology 56(6):1225–1238. doi: 10.1111/pala.12003 CrossRefGoogle Scholar
  69. Stigall AL (2014) When and how do species achieve niche stability over long time scales? Ecography 37:1123−1132. doi: 10.1111/ecog.00719
  70. Stigall AL, Brame H-MR (2014) Relating environmental change and species stability in Late Ordovician seas. GFF 136(1):249–253. doi: 10.1080/11035897.2013.852619 CrossRefGoogle Scholar
  71. Stigall Rode AL (2005) Systematic revision of the Middle and Late Devonian brachiopods Schizophoria (Schizophoria) and ‘Schuchertella’ from North America. J Syst Paleontol 3(2):133–167. doi: 10.1017/s1477201905001537 CrossRefGoogle Scholar
  72. Strömberg CA (2006) Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32(2):236–258CrossRefGoogle Scholar
  73. Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14(4):347–357. doi: 10.1111/j.1466-822X.2005.00162.x CrossRefGoogle Scholar
  74. Tyler CL, Leighton LR (2011) Detecting competition in the fossil record: support for character displacement among Ordovician brachiopods. Palaeogeogr Palaeoclimatol Palaeoecol 307(1–4):205–217. doi: 10.1016/j.palaeo.2011.05.020 CrossRefGoogle Scholar
  75. Vrba ES (1984) What is species selection? Syst Zool 33(3):318–328CrossRefGoogle Scholar
  76. Vrba ES (1987) Ecology in relation to speciation rates: some case histories of miocene-recent mammal clades. Evol Ecol 1(4):283–300CrossRefGoogle Scholar
  77. Walls BJ, Stigall AL (2011) Analyzing niche stability and biogeography of Late Ordovician brachiopod species using ecological niche modeling. Palaeogeogr Palaeoclimatol Palaeoecol 299(1–2):15–29. doi: 10.1016/j.palaeo.2010.10.024 CrossRefGoogle Scholar
  78. Walls BJ, Stigall AL (2012) A field-based analysis of the accuracy of niche models applied to the fossil record. Paleontol Contrib 6:1–12Google Scholar
  79. Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:19–26CrossRefGoogle Scholar
  80. Wiley EO, Mayden RL (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Annals Mo Bot Gardens 72:596–635CrossRefGoogle Scholar
  81. Wright DF, Stigall AL (2013a) Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLoS One 8(7):e68353. doi: 10.1371/journal.pone.0068353 CrossRefPubMedCentralPubMedGoogle Scholar
  82. Wright DF, Stigall AL (2013b) Phylogenetic revision of the Late Ordovician orthid brachiopod genera Plaesiomys and Hebertella from North America. J Paleontol 87(6):1107–1128CrossRefGoogle Scholar
  83. Wright DF, Stigall AL (2014) Species-level phylogenetic revision of the Ordovician orthide brachiopod Glyptorthis from North America. J Syst Palaeontol 12:893−906. doi: 10.1080/14772019.2013.839584

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Geological Sciences and Ohio Center for Ecology and Evolutionary StudiesOhio UniversityAthensUSA

Personalised recommendations