Advertisement

Macroevolution pp 113-162 | Cite as

Visualizing Macroevolution: From Adaptive Landscapes to Compositions of Multiple Spaces

  • Emanuele Serrelli
Chapter
Part of the Interdisciplinary Evolution Research book series (IDER, volume 2)

Abstract

The adaptive landscape is an important diagrammatic concept that was conceived in population genetics. During the Modern Synthesis, in the first half of the twentieth century, the landscape imagery was used to represent evolution on a large scale, aiding in the construction of a common language for a new evolutionary biology. Not only historic adaptive landscapes by Dobzhansky, Simpson, and others are a record of how macroevolution was thought of in those decades; they stimulate reflection on “combination spaces” that underlie them. In fact, any landscape diagram is the three-dimensional transposition of a multidimensional space of combinations of genes, morphological traits, or other kinds of variables. This is an important and enduring general point of awareness: The diagram displays some aspects of the considered space while hiding others, exposing the author and the user to incomplete understanding and to conflating different spaces. Today, macroevolution is studied as a multifarious exploration of spaces of possibilities of all different sorts, interconnected in complex ways: genotype spaces, molecular spaces, morphospaces, geographical spaces, ecological spaces, and genealogical spaces. Actual macroevolutionary stories and outcomes are a subset of the universes of possible combinations—of genes, nucleotides, morphological traits, and environmental variables. Visualizations of macroevolution are a challenge of showing both distinction and correlation between spaces of possibilities.

Keywords

Adaptation Speciation Macroevolution Visualization 

References

  1. Abe FR, Lieberman BS (2012) Quantifying morphological change during an evolutionary radiation of Devonian trilobites. Paleobiol 38(2):292–307CrossRefGoogle Scholar
  2. Abe FR, Lieberman BS (2009) The nature of evolutionary radiations: a case study involving Devonian trilobites. Evol Biol 36(2):225–234CrossRefGoogle Scholar
  3. Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113:9–32CrossRefPubMedGoogle Scholar
  4. Arnold S, Bürger R, Hohenlohe O, Ajie B, Jones A (2008) Understanding the evolution and stability of the G-matrix. Evolution 62:2451–2461CrossRefPubMedCentralPubMedGoogle Scholar
  5. Baum DA, DeWitt Smith S, Donovan SSS (2005) The tree-thinking challenge. Science 310:979–980Google Scholar
  6. Brasier M, Antcliffe J (2004) Decoding the Ediacaran enigma. Science 305:1115–1117CrossRefPubMedGoogle Scholar
  7. Carneiro M, Hartl DL (2010) Adaptive landscapes and protein evolution. Proc Nat Acad Sci USA 107(Suppl):1747–1751CrossRefPubMedCentralPubMedGoogle Scholar
  8. Colicchia G (2006) Ancient cephalopod scavenges successfully with its pinhole eye. Phys Educ 41(1):15–17CrossRefGoogle Scholar
  9. Darwin CR (1838) Notebook C: transmutation of species 2-7. Online on http://darwin-online.org.uk cod. CUL-DAR122
  10. Darwin C (1859) On the origin of species, 1st edn. John Murray, London (quoted sixth edition, 1872)Google Scholar
  11. Dawkins R (1983) Universal Darwinism. In: Bendall DS (ed) Evolution from molecules to man. Cambridge University Press, Cambridge. Reprinted in Hull DL, Ruse M (eds) The philosophy of biology. Oxford University Press, Oxford, pp 15–37Google Scholar
  12. Dawkins R (1996) Climbing mount improbable. W.W. Norton & Company, New YorkGoogle Scholar
  13. Dobzhansky T (1937) Genetics and the origin of species, 3rd edn. Columbia University Press, New York 1951Google Scholar
  14. Doebeli M (2012) Adaptive dynamics: a framework for modeling the long-term evolutionary dynamics of quantitative traits. In: Svensson EI, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 227–242Google Scholar
  15. Eldredge N (1999) The pattern of evolution. Freeman & Co, New YorkGoogle Scholar
  16. Elsdon-Baker F (2009) The selfish genius. How Richard Dawins rewrote Darwin’s legacy. Icon Books, LondonGoogle Scholar
  17. Fusco G, Carrer R, Serrelli E (2014) The landscape metaphor in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 114–128CrossRefGoogle Scholar
  18. Gavrilets S (1997) Evolution and speciation on holey adaptive landscapes. Trends Ecol Evol 12:307–312CrossRefPubMedGoogle Scholar
  19. Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, PrincetonGoogle Scholar
  20. Gillespie JH (1983) A simple stochastic gene substitution model. Theor Popul Biol 23:202–215CrossRefPubMedGoogle Scholar
  21. Gillespie JH (1984) Molecular evolution over the mutational landscape. Evolution 38:1116–1129CrossRefGoogle Scholar
  22. Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, OxfordGoogle Scholar
  23. Gregory TR (2008a) Understanding evolutionary trees. Evol Edu Outreach 1(2):121–137CrossRefGoogle Scholar
  24. Gregory TR (2008b) The evolution of eyes. Evol Edu Outreach Spec Issue 1(4):351–516CrossRefGoogle Scholar
  25. Halverson KL (2011) Improving tree-thinking one learnable skill at a time. Evol Edu Outreach 4(1):95–106CrossRefGoogle Scholar
  26. Hansen TF (2012) Adaptive landscapes and macroevolutionary dynamics. In: Svensson EI, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 205–226Google Scholar
  27. Hendricks JR, Lieberman BS, Stigall AL (2008) Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeogr Palaeoclimatol Palaeoecol 264(1–2):163–175CrossRefGoogle Scholar
  28. Hofmann HJ, Mountjoy EW (2001) Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils. Geology 29(12):1091–1094CrossRefGoogle Scholar
  29. Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA 106(Suppl 2):19659–19665CrossRefPubMedCentralPubMedGoogle Scholar
  30. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  31. Hutchinson GE (1965) The niche: an abstractly inhabited hypervolume. The ecological theatre and the evolutionary play. Yale University Press, New Haven, pp 26–78Google Scholar
  32. Huxley JS (1942) Evolution: the modern synthesis. Allen & Unwin, LondonGoogle Scholar
  33. Jablonski D (2008) Species selection: theory and data. Ann Rev Ecol Evol Syst 39(1):501–524CrossRefGoogle Scholar
  34. Kaplan JM (2008) The end of the adaptive landscape metaphor? Biol Philos 23(5):625–638. doi: 10.1007/s10539-008-9116-z CrossRefGoogle Scholar
  35. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  36. Kauffman SA, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45CrossRefPubMedGoogle Scholar
  37. Kidd DM (2010) Geophylogenies and the map of life. Syst Biol 59(6):741–752CrossRefPubMedGoogle Scholar
  38. Kidd DM, Liu X (2008) Geophylobuilder 1.0: an arcgis extension for creating “geophylogenies”. Molec. Ecol Res 8(1):88–91CrossRefGoogle Scholar
  39. Lamb TD (2011) Evolution of the eye. Sci Am 305(1):64–69CrossRefPubMedGoogle Scholar
  40. Lamb TD, Arendt D, Collin SP (2009) The evolution of phototransduction and eyes. Philos Trans R Soc B 364(1531):2791–2793CrossRefGoogle Scholar
  41. Lamb TD, Collin SP, Pugh EN (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8:960–975CrossRefPubMedCentralPubMedGoogle Scholar
  42. Lande R (1979a) Effective deme size during long-term evolution estimated from rates of chromosomal rearrangements. Evolution 33:234–251CrossRefGoogle Scholar
  43. Lande R (1979b) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416CrossRefGoogle Scholar
  44. Lewontin RC (1980) Theoretical population genetics in the evolutionary synthesis. In: Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, pp 58–68Google Scholar
  45. Lieberman BS (2012) Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evo Biol 39(2):181–191CrossRefGoogle Scholar
  46. Lunzer M, Miller SP, Felsheim R, Dean AM (2005) The biochemical architecture of an ancient adaptive landscape. Science 310:499–501CrossRefPubMedGoogle Scholar
  47. Machac A, Zrzavý J, Storch D (2011) Range size heritability in Carnivora is driven by geographic constraints. Am Nat 177(6):767–779CrossRefPubMedGoogle Scholar
  48. Maynard Smith J (1970) Natural selection and the concept of a protein space. Nature 225:563–564CrossRefGoogle Scholar
  49. Mayr E (1959) Where are we? Cold Spring Harb Symp Quant Biol 24:1–14CrossRefGoogle Scholar
  50. Mayr E (1973) The recent historiography of genetics. J Hist Biol 6:125–154CrossRefPubMedGoogle Scholar
  51. Mayr E (1980) Prologue: some thoughts on the history of the evolutionary synthesis. In: Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, pp 1–48Google Scholar
  52. Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, CambridgeGoogle Scholar
  53. McLennan DA (2010) How to read a phylogenetic tree. Evol Edu Outreach 3(4):506–519CrossRefGoogle Scholar
  54. Meisel RP (2010) Teaching tree-thinking to undergraduate biology students. Evol Edu Outreach 3(4):621–628CrossRefGoogle Scholar
  55. Monod J (1970) Le hasard et la nécessité. Le Seuil, Paris. Tr. Chance and necessity: an essay on the natural philosophy of modern biology. Alfred A. Knopf, New York, 1971Google Scholar
  56. Muntz WR (1999) Visual system, behaviour, and environment in cephalopods. In: Archer SN et al (eds) Adaptative mechanisms in the ecology of vision. Kluwer, London, pp 467–483CrossRefGoogle Scholar
  57. Myers CE, Lieberman BS (2011) Sharks that pass in the night: using geographical information systems to investigate competition in the cretaceous western interior seaway. Proc R Soc B 278(1706):681–689CrossRefPubMedCentralPubMedGoogle Scholar
  58. Odling-Smee J, Laland K, Feldman MW (2003) Niche construction. Princeton University Press, PrincetonGoogle Scholar
  59. O’Hara RJ (1992) Telling the tree: narrative representation and the study of evolutionary history. Biol Philos 7:135–160CrossRefGoogle Scholar
  60. O’Hara RJ (1998) Population thinking and tree thinking in systematics. Zool Scripta 26(4):323–329CrossRefGoogle Scholar
  61. Omland KE, Cook LG, Crisp MD (2008) Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. BioEssays 30:854–867CrossRefPubMedGoogle Scholar
  62. Orr H (2006) The population genetics of adaptation on correlated fitness landscapes: the block model. Evolution 60:1113–1124CrossRefPubMedGoogle Scholar
  63. Paley W (1828) Natural theology, 2nd edn. J. Vincent, OxfordGoogle Scholar
  64. Papin A, Reed JL, Palsson BO (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29(12):641–647CrossRefPubMedGoogle Scholar
  65. Perelson AS, Macken CA (1995) Protein evolution on partially correlated landscapes. Proc Natl Acad Sci USA 92:9657–9661CrossRefPubMedCentralPubMedGoogle Scholar
  66. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78(4):419–433CrossRefPubMedGoogle Scholar
  67. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonGoogle Scholar
  68. Peterson AT, Vieglais DA (2001) Predicting Species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51(5):363CrossRefGoogle Scholar
  69. Pigliucci M (2008) Sewall Wright’s adaptive landscapes: 1932 vs. 1988. Biol Philos 23:591–603CrossRefGoogle Scholar
  70. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–386CrossRefPubMedGoogle Scholar
  71. Provine WB (1971) Origins of theoretical population genetics. University of Chicago Press, ChicagoGoogle Scholar
  72. Provine WB (1980a) Epilogue. In: Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, pp 399–411Google Scholar
  73. Provine WB (1980b) Genetics. In: Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, pp 51–58Google Scholar
  74. Provine WB (1986) Sewall Wright and evolutionary biology. University of Chicago Press, ChicagoGoogle Scholar
  75. Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci USA 81:802CrossRefGoogle Scholar
  76. Rhode RA (2005) Introduction. GeoWhen Database. http://www.stratigraphy.org/upload/bak/geowhen/index.html. Accessed June 2014
  77. Rice SH (2004) Evolutionary theory: Mathematical and conceptual foundations. Sinauer associates, SunderlandGoogle Scholar
  78. Rice SH (2012) Phenotype landscapes, adaptive landscapes, and the evolution of development. In: Svensson EI, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 283–295Google Scholar
  79. Rode AL, Lieberman BS (2004) Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeog Palaeoclim Palaeoecol 211(3–4):345–359CrossRefGoogle Scholar
  80. Rowe W, Platt M, Wedge DC, Day PJ, Kell DB, Knowles J et al (2010) Analysis of a complete DNA-protein affinity landscape. J R Soc Interface 7(44):397–408CrossRefPubMedCentralPubMedGoogle Scholar
  81. Ruse M (1990) Are pictures really necessary? The case of Sewell Wright’s “adaptive landscapes”. In: PSA: proceedings of the biennial meeting of the philosophy of science association vol 2, pp 63–77Google Scholar
  82. Saunders WB, Landman NH (1987) Nautilus: the biology and paleobiology of a living fossil. Plenum, New YorkCrossRefGoogle Scholar
  83. Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc R Soc B 255:279–284CrossRefPubMedGoogle Scholar
  84. Sepkoski D (2012) Rereading the fossil record. The growth of paleobiology as an evolutionary discipline. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  85. Serrelli E (2011) Adaptive landscapes: a case study of metaphors, models, and synthesis in evolutionary biology. PhD thesis in Education and Communication Sciences, University of Milano Bicocca. http://hdl.handle.net/10281/19338
  86. Serrelli E (under review) The Extended Evolutionary Synthesis: limits and promises of a metascientific view of evolutionary biology. Stud Hist Philos Biol Biomed Sci (under review)Google Scholar
  87. Shen B et al (2008) The Avalon explosion: evolution of Ediacara morphospace. Science 319(5859):81–84CrossRefPubMedGoogle Scholar
  88. Sidlauskas B et al (2009) Linking big: the continuing promise of evolutionary synthesis. Evolution 64(4):871–880CrossRefPubMedGoogle Scholar
  89. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  90. Smith JM (1962) The limitations of molecular evolution. In: Good IJ (ed) The scientist speculates: an anthology of partly baked ideas. Basic Books, New York, pp 252–256  Google Scholar
  91. Stadler BMR, Stadler PF (2002) Generalized topological spaces in evolutionary theory and combinatorial chemistry. J Chem Inf Comput Sci 42:577–585CrossRefPubMedGoogle Scholar
  92. Thanukos A (2009) A name by any other tree. Evol Edu Outreach 2(2):303–309CrossRefGoogle Scholar
  93. Thanukos A (2010) Evolutionary trees from the tabloids and beyond. Evol Edu Outreach 3(4):563–572CrossRefGoogle Scholar
  94. Torrens E, Barahona A (2012) Why are some evolutionary trees in natural history museums prone to being misinterpreted? Evol Edu Outreach 5(1):76–100CrossRefGoogle Scholar
  95. Voigt CA, Kauffman S, Wang ZG (2000) Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem 55:79–160CrossRefPubMedGoogle Scholar
  96. Waggoner B (2003) The Ediacaran biotas in space and time. Integr Comp Biol 43(1):104–113CrossRefPubMedGoogle Scholar
  97. Warrant EJ (1999) The eye of deep-sea fishes and the changing nature of visual scenes with depth. Phil Trans R Soc Lond B 355:1155–1159CrossRefGoogle Scholar
  98. Weinberger E (1990) Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol Cybern 63:325–336CrossRefGoogle Scholar
  99. Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetics systematics. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  100. Wright S (1931) Evolution in Mendelian populations. Genetics 16(97):97–159PubMedCentralPubMedGoogle Scholar
  101. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the 6th international congress of genetics vol 1, pp 356–366Google Scholar
  102. Wright S (1988) Surfaces of selective value revisited. Am Nat 131(1):115–123CrossRefGoogle Scholar
  103. Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24(1):31–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.“Riccardo Massa” Department of Human SciencesUniversity of Milano BicoccaMilanItaly

Personalised recommendations