Communication, Rationality, and Conceptual Changes in Scientific Theories

Part of the Synthese Library book series (SYLI, volume 359)

Abstract

This article outlines how conceptual spaces theory applies to modeling changes of scientific frameworks when these are treated as spatial structures rather than as linguistic entities. The theory is briefly introduced and five types of changes are presented. It is then contrasted with Michael Friedman’s neo-Kantian account that seeks to render Kuhn’s “paradigm shift” as a communicatively rational historical event of conceptual development in the sciences. Like Friedman, we refer to the transition from Newtonian to relativistic mechanics as an example of “deep conceptual change.” But we take the communicative rationality of radical conceptual change to be available prior to the philosophical meta-paradigms that Friedman deems indispensable for this purpose.

Keywords

Incommensurability Conceptual spaces Revisable a priori Neo-Kantianism Scientific revolution Persuasion Theory change 

Notes

Acknowledgements

Previous versions of this paper were presented at the 2014 Meeting of the Nordic Network for Philosophy of Science, 27–28 March 2014, and the “Conceptual Spaces at Work” conference, 24–26 May 2012, both held at Lund University, Sweden. For discussion and useful comments, we thank audience members and two anonymous reviewers. Both authors acknowledge funding from the Swedish Research Council.

References

  1. Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. Batterman, R. (2012). Intertheory relations in physics. In E. N. Zalta, (Ed.), The Stanford encyclopedia of philosophy (Fall 2012 Edition). http://plato.stanford.edu/archives/fall2012/entries/physics-interrelate. Accessed 23 Jan 2014
  3. Brenner, A. A. (1990). Holism a century ago. The elaboration of Duhem’s thesis. Synthese, 83, 325–335.CrossRefGoogle Scholar
  4. D’Agostino, F. (2013). Verballed? Incommensurability 50 years on. Synthese, 191(3), 517–538.Google Scholar
  5. DiSalle, R. (2002). Reconsidering Kant, Friedman, logical positivism, and the exact sciences. Philosophy of Science, 69, 192–211.CrossRefGoogle Scholar
  6. Einstein, A. (1924). Review of Elsbach 1924. Deutsche Literaturzeitung, 45, 1685–1692.Google Scholar
  7. Friedman, M. (1998). On the sociology of scientific knowledge and its philosophical agenda. Studies in History and Philosophy of Science, 29(2), 239–271.CrossRefGoogle Scholar
  8. Friedman, M. (2001). Dynamics of reason. Stanford: CSLI Publications.Google Scholar
  9. Friedman, M. (2002a). Kant, Kuhn, and the rationality of science. Philosophy of Science, 69, 171–190.CrossRefGoogle Scholar
  10. Friedman, M. (2002b). Kuhn and logical empiricism. In T. Nickles (Ed.), Thomas Kuhn(pp. 19–44). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  11. Friedman, M. (2008). Ernst Cassirer and Thomas Kuhn: The neo-Kantian tradition in history and philosophy of science. Philosophical Forum, 39, 239–252.CrossRefGoogle Scholar
  12. Friedman, M. (2010). Synthetic history reconsidered. In M. Domski & M. Dickson (Eds.), Discourse on a new method. Reinvigorating the marriage of history and philosophy of science (pp. 571–813). Chicago/La Salle: Open Court.Google Scholar
  13. Gärdenfors, P. (1988). Knowledge in flux. Boston: MIT Press.Google Scholar
  14. Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.Google Scholar
  15. Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual spaces. Cambridge, MA: MIT Press.Google Scholar
  16. Gärdenfors, P., & Zenker, F. (2011). Using conceptual spaces to model the dynamics of empirical theories. In E. J. Olsson & S. Enqvist (Eds.), Philosophy of science meets belief revision theory (pp. 137–153). Berlin: Springer.Google Scholar
  17. Gärdenfors, P., & Zenker, F. (2013). Theory change as dimensional change: Conceptual spaces applied to the dynamics of empirical theories. Synthese, 190(6), 1039–1058.CrossRefGoogle Scholar
  18. Habermas, J. (1984) [1981]. Theory of communicative action volume one: Reason and the rationalization of society (T. A. McCarthy, Trans.). Boston: Beacon Press.Google Scholar
  19. Habermas, J. (1987) [1981]. Theory of communicative action volume two: Liveworld and system: A critique of functionalist reason (T. A. McCarthy, Trans.). Boston: Beacon Press.Google Scholar
  20. Howard, D. (2010). ‘Let me briefly indicate why I do not find this standpoint natural.’ Einstein, general relativity, and the contingent a priori. In M. Domski & M. Dickson (Eds.), Discourse on a new method. Reinvigorating the marriage of history and philosophy of science (pp. 333–355). Chicago/La Salle: Open Court.Google Scholar
  21. Kindi, V. (2011). The challenge of scientific revolutions: Van Fraassen’s and Friedman’s responses. International Studies in the Philosophy of Science, 25(4), 327–349.CrossRefGoogle Scholar
  22. Kuhn, T. (1970 [1962]). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  23. Kuhn, T. (1987). What are scientific revolutions? In L. Krüger, L. Daston, & M. Heidelberger (Eds.), The probabilistic revolution volume one (pp. 7–22). Cambridge, MA: MIT Press.Google Scholar
  24. Kuhn, T. (2000). The road since structure. Philosophical essays, 1970–1993 (with an autobiographical interview, J. Conant & J. Haughland, Ed.), Chicago: University of Chicago Press.Google Scholar
  25. Lakatos, I. (1978). The methodology of scientific research programs. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  26. Ladyman, J. (2014). Structural realism. In E.N. Zalta, (Ed.), The Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/spr2014/entries/structural-realism/. Accessed 22 Nov 2014
  27. Padovani, F. (2011). Relativizing the relativized a priori: Reichenbach’s axioms of coordination divided. Synthese, 181(1), 41–62.CrossRefGoogle Scholar
  28. Petersen, G., & Zenker, F. (2014). From Euler to Navier-Stokes: A spatial analysis of conceptual changes in 19th-century fluid dynamics. International Studies in the Philosophy of Science, 28(3), 1–19.CrossRefGoogle Scholar
  29. Rehg, W. (2009). Cogent science in context. The science wars, argumentation theory, and Habermas. Cambridge, MA: MIT Press.Google Scholar
  30. Reichenbach, H. (1920). Relativitätstheorie und Erkenntnis apriori. Berlin: Springer. M. Reichenbach, Trans. (1965). The theory of relativity and a priori knowledge. Berkeley/Los Angeles: University of California Press.Google Scholar
  31. Reisch, G. A. (1991). Did Kuhn kill logical empiricism? Philosophy of Science, 58(2), 264–277.CrossRefGoogle Scholar
  32. Schilpp, P. A. (Ed.). (1963). The philosophy of Rudolf Carnap. La Salle: Open Court.Google Scholar
  33. Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht: Reidel.CrossRefGoogle Scholar
  34. Sznajder, M. (2014). Inductive logic and conceptual spaces: Carnap’s basic system and beyond. Draft available from the author.Google Scholar
  35. Zenker, F. (2009). Ceteris Paribus in conservative belief revision. Berlin: Peter Lang.Google Scholar
  36. Zenker, F. (2014). From features via frames to spaces. Modeling scientific conceptual change without incommensurability or aprioricity. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Frames and concept types: Applications in language and philosophy (pp. 69–89). Dordrecht: Kluwer/Reidel.CrossRefGoogle Scholar
  37. Zenker, F., & Gärdenfors, P. (2014). Modeling diachronic changes in structuralism and in conceptual spaces. Erkenntnis, 79(8), 1547–1561.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Philosophy and Cognitive ScienceLund UniversityLundSweden

Personalised recommendations