Editors’ Introduction: Conceptual Spaces at Work

Part of the Synthese Library book series (SYLI, volume 359)

Abstract

This introductory chapter provides a non-technical presentation of conceptual spaces as a representational framework for modeling different kinds of similarity relations in various cognitive domains. Moreover, we briefly summarize each chapter in this volume.

Keywords

Distance measure Human conceptualization Representation Similarity Prototype Sensory perceptions Cross-sensory descriptions Sense Ontologies Construals 

References

  1. Barsalou, L. W. (1992). Frames, concepts, and conceptual fields. In E. Kittay & A. Lehrer (Eds.), Frames, fields, and contrasts: New essays in semantic and lexical organization (pp. 21–74). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  2. Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkeley: University of California Press.Google Scholar
  3. Chella, A., Frixione, M., & Gaglio, S. (2001a). Conceptual spaces for computer vision representations. Artificial Intelligence Review, 16, 137–152.CrossRefGoogle Scholar
  4. Chella, A., Gaglio, S., & Pirrone, R. (2001b). Conceptual representations of actions for autonomous robots. Robotics and Autonomous Systems, 34, 251–263.CrossRefGoogle Scholar
  5. Friedman, M. (2001). Dynamics of reason. Stanford: CSLI Publications.Google Scholar
  6. Gärdenfors, P. (1990). Induction, conceptual spaces and AI. Philosophy of Science, 57, 78–95.CrossRefGoogle Scholar
  7. Gärdenfors, P. (1992). A geometric model of concept formation. In S. Ohsuga et al. (Eds.), Information modelling and knowledge bases III (pp. 1–16). Amsterdam: IOS Press.Google Scholar
  8. Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.Google Scholar
  9. Gärdenfors, P. (2007). Representing actions and functional properties in conceptual spaces. In T. Ziemke, J. Zlatev, & R. M. Frank (Eds.), Body, language and mind, volume 1: Embodiment (pp. 167–195). Berlin: Mouton de Gruyter.Google Scholar
  10. Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual spaces. Cambridge, MA: MIT Press.Google Scholar
  11. Gärdenfors, P., & Warglien, M. (2012). Using conceptual spaces to model actions and events. Journal of Semantics, 29, 487–519.CrossRefGoogle Scholar
  12. Gärdenfors, P., & Zenker, F. (2013). Theory change as dimensional change: Conceptual spaces applied to the dynamics of empirical theories. Synthese, 190, 1039–1058.CrossRefGoogle Scholar
  13. Jäger, G. (2010). Natural color categories are convex sets. Amsterdam Colloquium 2009, LNAI 6042, pp. 11–20. Springer: Berlin.Google Scholar
  14. Lakoff, G. (1987). Women, fire, and dangerous things. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  15. Langacker, R. W. (1987). Foundations of cognitive grammar, vol. I. Stanford: Stanford University Press.Google Scholar
  16. Mervis, C., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89–115.CrossRefGoogle Scholar
  17. Okabe, A., Boots, B., & Sugihara, K. (1992). Spatial tessellations: Concepts and applications of Voronoi diagrams. New York: Wiley.Google Scholar
  18. Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.CrossRefGoogle Scholar
  19. Rosch, E. (1978). Prototype classification and logical classification: The two systems. In E. Scholnik (Ed.), New trends in cognitive representation: Challenges to Piaget’s theory(pp. 73–86). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  20. Schiffman, H. R. (1982). Sensation and perception (2nd ed.). New York: Wiley.Google Scholar
  21. Steels, L., Kaplan, F., McIntyre, A., & Van Looveren, J. (2002). Crucial factors in the origins of word-meaning. In A. Wray (Ed.), The transition to language (pp. 252–271). Oxford: Oxford University Press.Google Scholar
  22. Warglien, M., Gärdenfors, P., & Westera, M. (2012). Event structure, conceptual spaces and the semantics of verbs. Theoretical Linguistics, 38, 159–193.Google Scholar
  23. Zenker, F. (2014). From features via frames to spaces. Modeling scientific conceptual change without incommensurability or aprioricity. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Concept types and frames. Applications in language and philosophy (pp. 69–89). Dordrecht: Springer.CrossRefGoogle Scholar
  24. Zenker, F., & Gärdenfors, P. (2013). Modeling diachronic changes in structuralism and conceptual spaces. Erkenntnis, 79(8), 1547–1561.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Philosophy and Cognitive ScienceLund UniversityLundSweden

Personalised recommendations