Optical Guided Wave Switching

  • Costantino De Angelis
  • Daniele Modotto
  • Andrea Locatelli
  • Stefan Wabnitz
Part of the Springer Series in Optical Sciences book series (SSOS, volume 194)


Optical switching is a key functionality for enabling transparent all-optical networks. We present an overview of optical switching devices, based on either optical or electrical control signals, which permit to avoid the necessity of optics-electronics-optics conversion. We describe the basic principles of various guided wave optical switching devices, which exploit either relatively long interaction lengths in order to reduce the operating power requirements, or strong transverse confinement to reduce device dimensions. These devices include nonlinear mode couplers and interferometers based on optical fibers, as well as integrated waveguides based on photonic crystal structures or surface wave interactions in novel materials such as graphene.


Photonic Crystal Switching Power Ridge Waveguide Exceptional Point Nonlinear Phase Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by Fondazione Cariplo (grants no. 2011-0395 and no. 2013-0736), the Italian Ministry of University and Research (grant no. 2012BFNWZ2), and the US Army (grants no. W911NF-12-1-0590 and no. W911NF-13-1-0466).


  1. 1.
    A. Yariv, Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919–933 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Jensen, The nonlinear coherent coupler. IEEE J. Quantum Electron. 18, 1580–1583 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Maier, Optical transistors and bistable devices utilizing nonlinear transmission of light in systems with undirectional coupled waves. Sov. J. Quantum Electron. 12, 1490–1494 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    G.I. Stegeman, E.M. Wright, All-optical waveguide switching. Opt. Quant. Electron. 22, 95–122 (1990)CrossRefGoogle Scholar
  5. 5.
    H.G. Winful, Self-induced polarization changes in birefringent optical fibers. Appl. Phys. Lett. 47, 213–215 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    B. Daino, G. Gregori, S. Wabnitz, New all-optical devices based on third-order nonlinearity of birefringent fibers. Opt. Lett. 11, 42–44 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    S. Trillo, S. Wabnitz, Nonlinear dynamics and instabilities of coupled waves and solitons in optical fibers, in Anisotropic and Nonlinear Optical Waveguides, ed. by C.S. Someda, G.I. Stegeman (Elsevier, Amsterdam, 1992), pp. 185–236CrossRefGoogle Scholar
  8. 8.
    B. Daino, G. Gregori, S. Wabnitz, Stability analysis of nonlinear coherent coupling. J. Appl. Phys. 58, 4512–4514 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    H.G. Winful, Polarization instabilities in birefringent nonlinear media: application to fiber-optics devices. Opt. Lett. 11, 33–35 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    S. Wabnitz, E.M. Wright, C.T. Seaton, G.I. Stegeman, Instabilities and all-optical phase-controlled switching in a nonlinear directional coherent coupler. Appl. Phys. Lett. 49, 838–840 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    D.D. Gusovskii, E.M. Dianov, A.A. Maier, V.B. Neustruev, E.I. Shklovskii, I.A. Shcherbakov, Nonlinear light transfer in tunnel-coupled optical waveguides. Sov. J. Quantum Electron. 15, 1523–1526 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    D.D. Gusovskii, E.M. Dianov, A.A. Maier, V.B. Neustruev, V.V. Osiko, A.M. Prokhorov, KYu. Sitarskii, I.A. Shcherbakov, Experimental observation of the self-switching of radiation in tunnel-coupled optical waveguides. Sov. J. Quantum Electron. 17, 724–727 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    S.R. Friberg, Y. Silberberg, M.K. Oliver, M.J. Andrejco, M.A. Saifi, P.W. Smith, Ultrafast all-optical switching in a dual-core fiber nonlinear coupler. Appl. Phys. Lett. 51, 1135–1137 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    A.M. Weiner, Y. Silberberg, S.R. Friberg, B.G. Sfez, P.W. Smith, Femtosecond all-optical switching in a dual-core fiber nonlinear coupler. Opt. Lett. 13, 904–906 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Weiner, Y. Silberberg, H. Fouckhardt, D.E. Leaird, M.A. Saifi, M.J. Andrejco, P.W. Smith, Use of femtosecond square pulses to avoid pulse breakup in all-optical switching. IEEE J. Quantum Electron. 25, 2648–2655 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    S. Trillo, S. Wabnitz, R.H. Stolen, G. Assanto, C.T. Seaton, G.I. Stegeman, Experimental observation of polarization instability in a birefringent optical fiber. Appl. Phys. Lett. 49, 1224–1226 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    S. Trillo, S. Wabnitz, W.C. Banyai, N. Finlayson, C.T. Seaton, G.I. Stegeman, R.H. Stolen, Picosecond nonlinear polarization switching with a fiber filter. Appl. Phys. Lett. 53, 837–839 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    S. Trillo, S. Wabnitz, W.C. Banyai, N. Finlayson, C.T. Seaton, G.I. Stegeman, R.H. Stolen, Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter. IEEE J. Quantum Electron. 25, 104–112 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, B. Daino, Polarization switching in spun birefringent fiber. Appl. Phys. Lett. 59, 2082–2084 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, B. Daino, All-optical polarization switch with a long low-birefringence fiber. Electron. Lett. 27, 1407–1408 (1991)CrossRefGoogle Scholar
  21. 21.
    P. Ferro, S. Trillo, S. Wabnitz, All-optical polarization differential amplification with a birefringent fiber. Electron. Lett. 30, 1616–1617 (1994)CrossRefGoogle Scholar
  22. 22.
    P. Ferro, S. Trillo, S. Wabnitz, Phase control of a nonlinear coherent coupler: the multibeatlength twisted birefringent fiber. Appl. Phys. Lett. 64, 2872–2874 (1994)CrossRefGoogle Scholar
  23. 23.
    P. Ferro, S. Trillo, S. Wabnitz, Demonstration of nonlinear nonreciprocity and logic operations with a twisted birefringent optical fiber. Opt. Lett. 19, 263–265 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    N.J. Doran, D. Wood, Soliton processing element for all-optical switching and logic. J. Opt. Soc. Am. B 4, 1843–1846 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    N. Imoto, S. Watkins, Y. Sasaki, A nonlinear optical-fiber interferometer for nondemolitional measurement of photon number. Opt. Commun. 61, 159–163 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    B.K. Nayar, N. Finlayson, N.J. Doran, S.T. Davey, W.L. Williams, J.W. Arkwright, All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer. Opt. Lett. 16, 408–410 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    M. Asobe, Effects of group-velocity dispersion in all-optical switching devices using highly nonlinear optical waveguides. J. Opt. Soc. Am. B 12, 1287–1299 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    N.J. Doran, D.S. Forrester, B.K. Nayar, Experimental investigation of all-optical switching in a fibre loop mirror device. Electron. Lett. 25, 267–268 (1989)CrossRefGoogle Scholar
  29. 29.
    K. Otsuka, Nonlinear antiresonant ring interferometer. Opt. Lett. 8, 471–473 (1983)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    D.B. Mortimore, Fiber loop reflectors. J. Lightwave Technol. 6, 1217–1224 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    N.J. Doran, D. Wood, Nonlinear optical loop mirror. Opt. Lett. 13, 56–58 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    K.J. Blow, N.J. Doran, B.K. Nayar, Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Opt. Lett. 14, 754–756 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    M.N. Islam, E.R. Sunderman, R.H. Stolen, W. Pleibel, J.R. Simpson, Soliton switching in a fiber nonlinear loop mirror. Opt. Lett. 14, 811–813 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    M.C. Farries, D.N. Payne, Optical fiber switch employing a Sagnac interferometer. Appl. Phys. Lett. 55, 25–26 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    K.J. Blow, N.J. Doran, B.K. Nayar, B.P. Nelson, Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror. Opt. Lett. 15, 248–250 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    M. Jinno, T. Matsumoto, Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer. IEEE Photon. Technol. Lett. 2, 349–351 (1990)ADSCrossRefGoogle Scholar
  37. 37.
    M. Jinno, T. Matsumoto, Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams Opt. Lett. 16, 220–222 (1991)Google Scholar
  38. 38.
    L.F. Stokes, M. Chodorow, H.J. Shaw, All-single-mode fiber resonator. Opt. Lett. 7, 288–290 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, M. Matsuoka, Observation of bifurcation to chaos in an all-optical bistable system. Phys. Rev. Lett. 50, 109–112 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Optical multistability in a fiber-optic passive-loop resonator. Opt. Commun. 59, 309–312 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    M. Haelterman, S. Trillo, S. Wabnitz, Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    S. Coen, M. Haelterman, P. Emplit, L. Delage, L.M. Simohamed, F. Reynaud, Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator. J. Opt. Soc. Am. B 15, 2283–2293 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    S. Trillo, S. Wabnitz, E.M. Wright, G.I. Stegeman, Soliton switching in fiber nonlinear directional couplers. Opt. Lett. 13, 672–674 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    S. Trillo, S. Wabnitz, Weak-pulse-activated soliton switching in nonlinear couplers. Opt. Lett. 16, 1–3 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    M. Romagnoli, S. Trillo, S. Wabnitz, Soliton switching in nonlinear couplers. Opt. Quant. Electron. 24, S1237–S1267 (1992)CrossRefGoogle Scholar
  46. 46.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)MATHGoogle Scholar
  47. 47.
    J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    M. Soljacic, M. Ibanescu, S.G. Johnson, Y. Fink, J.D. Joannopoulos, Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66, 055601 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    S.F. Mingaleev, Y.S. Kivshar, Nonlinear transmission and light localization in photonic-crystal waveguides. J. Opt. Soc. Am. B 19, 2241–2249 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    M. Soljacic, C. Luo, J.D. Joannopoulos, S. Fan, Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    S. Boscolo, M. Midrio, C.G. Someda, Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides. IEEE J. Quantum Electron. 38, 47–53 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    A. Martinez, F. Cuesta, J. Marti, Ultrashort 2-D photonic crystal directional couplers. IEEE Photon. Technol. Lett. 15, 694–696 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    M. Thorhauge, L.H. Frandsen, P.I. Borel, Efficient photonic crystal directional couplers. Opt. Lett. 28, 1525–1527 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000)Google Scholar
  55. 55.
    R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45, 364–374 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    A. Locatelli, D. Modotto, D. Paloschi, C. De Angelis, All optical switching in ultrashort photonic crystal couplers. Opt. Commun. 237, 97–102 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    J.S. Aitchison, D.C. Hutchings, J.U. Kang, G.I. Stegeman, A. Villeneuve, The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33, 341–348 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    S.G. Johnson, P.R. Villeneuve, S. Fan, J.D. Joannopoulos, Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    T.D. Happ, M. Kamp, A. Forchel, Photonic crystal tapers for ultracompact mode conversion. Opt. Lett. 26, 1102–1104 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    P. Bienstman, S. Assefa, S.G. Johnson, J.D. Joannopoulos, G.S. Petrich, L.A. Kolodziejski, Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B 20, 1817–1821 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    A.L. Reynolds, U. Peschel, F. Lederer, P.J. Roberts, T.F. Krauss, P.J.I. de Maagt, Coupled defects in photonic crystals. IEEE Trans. Microwave Theory Tech. 49, 1860–1867 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    U. Peschel, A.L. Reynolds, B. Arredondo, F. Lederer, P.J. Roberts, T.F. Krauss, P.J.I. de Maagt, Transmission and reflection analysis of functional coupled cavity components. IEEE J. Quantum Electron. 38, 830–836 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    D.N. Christodoulides, N.K. Efremidis, Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals. Opt. Lett. 27, 568–570 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    K. Al-hemyari, A. Villeneuve, J.U. Kang, J.S. Aitchison, C.N. Ironside, G.I. Stegeman, Ultrafast all-optical switching in GaAlAs directional couplers at 1.55 µm without multiphoton absorption. Appl. Phys. Lett. 63, 3562–3564 (1993)ADSCrossRefGoogle Scholar
  66. 66.
    J.S. Aitchison, A. Villeneuve, G.I. Stegeman, All-optical switching in two cascaded nonlinear directional couplers. Opt. Lett. 20, 698–700 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    A. Auditore, C. De Angelis, A. Locatelli, A.B. Aceves, Tuning of surface plasmon polaritons beat length in graphene directional couplers. Opt. Lett. 38, 4228–4231 (2013)CrossRefGoogle Scholar
  68. 68.
    A. Auditore, C. De Angelis, A. Locatelli, S. Boscolo, M. Midrio, M. Romagnoli, A.-D. Capobianco, G. Nalesso, Graphene sustained nonlinear modes in dielectric waveguides. Opt. Lett. 38, 631–633 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    D.A. Smirnova, A.V. Gorbach, I.V. Iorsh, I.V. Shadrivov, Y.S. Kivshar, Nonlinear switching with a graphene coupler. Phys. Rev. B 88, 045433 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    P.I. Buslaev, I.V. Iorsh, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Plasmons in waveguide structures formed by two graphene layers. JETP Lett. 97, 535–539 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    A. Locatelli, A.-D. Capobianco, G. Nalesso, S. Boscolo, M. Midrio, C. De Angelis, Graphene based electro-optical control of the beat length of dielectric couplers. Opt. Commun. 318, 175–179 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    Y.V. Bludov, D.A. Smirnova, YuS Kivshar, N.M.R. Peres, M.I. Vasilevskiy, Nonlinear TE-polarized surface polaritons on graphene. Phys. Rev. B 89, 035406 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    S.A. Mikhailov, K. Ziegler, New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    S.A. Mikhailov, K. Ziegler, Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.: Condens. Matter 20, 1–10 (2008)Google Scholar
  75. 75.
    M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infra-red frequencies. Phys. Rev. B 80, 245435 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    A.V. Gorbach, Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A 87, 013830 (2013)ADSCrossRefGoogle Scholar
  78. 78.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. Javier Garcia De Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 486, 77–81 (2012)Google Scholar
  80. 80.
    Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, G. Dominguez, M. Thiemens, M.M. Fogler, A.H. Castro-Neto, C.N. Lau, F. Keilmann, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012)ADSGoogle Scholar
  81. 81.
    B. Wang, X. Zhang, X. Yuan, J. Teng, Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)ADSMATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    G.W. Hanson, Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56, 747–757 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    A. Locatelli, A.-D. Capobianco, M. Midrio, S. Boscolo, C. De Angelis, Graphene-assisted control of coupling between optical waveguides. Opt. Express 20, 28479 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    S. Klaiman, U. Gunther, N. Moiseyev, Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    S. Yu, G.X. Piao, D.R. Mason, S. In, N. Park, Spatiospectral separation of exceptional points in PT-symmetric optical potentials. Phys. Rev. A 86, 031802 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A.T.S. Wee, W. Ji, Giant two-photon absorption in bilayer graphene. Nano Lett. 11, 2622–2627 (2011)CrossRefGoogle Scholar
  91. 91.
    K. Kim, J.Y. Choi, T. Kim, S.H. Cho, H.J. Chung, A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)ADSCrossRefGoogle Scholar
  93. 93.
    M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)ADSCrossRefGoogle Scholar
  95. 95.
    M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, A.-D. Capobianco, Graphene-assisted critically-coupled optical ring modulator. Opt. Express 20, 23144–23155 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nat. Photon. 5, 411–415 (2011)ADSCrossRefGoogle Scholar
  97. 97.
    J.T. Kim, C.G. Choi, Graphene-based polymer waveguide polarizer. Opt. Express 20, 3556–3562 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008)CrossRefGoogle Scholar
  99. 99.
    A.-D. Capobianco, A. Locatelli, C. De Angelis, M. Midrio, S. Boscolo, Finite-difference beam propagation method for graphene-based devices. IEEE Photon. Technol. Lett. 26, 1007–1010 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    D.N. Christodoulides, R.I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)ADSCrossRefGoogle Scholar
  101. 101.
    T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, F. Lederer, Anomalous refraction and diffraction in discrete optical systems. Phys. Rev. Lett. 88, 093901 (2002)ADSCrossRefGoogle Scholar
  102. 102.
    A. Locatelli, M. Conforti, D. Modotto, C. De Angelis, Diffraction engineering in arrays of photonic crystal waveguides. Opt. Lett. 30, 2894–2896 (2005)ADSCrossRefGoogle Scholar
  103. 103.
    A. Locatelli, M. Conforti, D. Modotto, C. De Angelis, Discrete negative refraction in photonic crystal waveguide arrays. Opt. Lett. 31, 1343–1345 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    M. Guasoni, A. Locatelli, C. De Angelis, Peculiar properties of photonic crystal binary waveguide arrays. J. Opt. Soc. Am. B 25, 1515–1522 (2008)ADSCrossRefGoogle Scholar
  105. 105.
    M. Conforti, M. Guasoni, C. De Angelis, Subwavelength diffraction management. Opt. Lett. 33, 2662–2664 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Costantino De Angelis
    • 1
  • Daniele Modotto
    • 1
  • Andrea Locatelli
    • 1
  • Stefan Wabnitz
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di BresciaBresciaItaly

Personalised recommendations