All-Optical Signal Processing pp 449-467

Part of the Springer Series in Optical Sciences book series (SSOS, volume 194) | Cite as

Harnessing Nonlinear Optics for Microwave Signal Processing

Chapter

Abstract

Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics (MWP) can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we look at the potential of using nonlinear optical effects in a chip scale to enable RF signal processing with enhanced performance. We review a number of recent results in this field, with particular focus on the creation of frequency agile and high suppression microwave bandstop filters using on-chip stimulated Brillouin scattering (SBS). We also discuss the future prospect of nonlinear integrated MWP to enable a general purpose, programmable analog signal processor, as well as compact, high performance active microwave filters with enhanced energy efficiency.

References

  1. 1.
    E.I. Ackerman, G.E. Betts, W.K. Burns, J.C. Campbell, C.H. Cox, N. Duan, J.L. Prince, M.D. Regan, H.V. Roussell, in Proceedings of the IEEE MTT-S International Microwave Symposium (IMS 2007) (Honolulu, HI, 2007) pp. 51–54Google Scholar
  2. 2.
    G. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, London, 2001)Google Scholar
  3. 3.
    A. Biberman, B.G. Lee, A.C. Turner-Foster, M.A. Foster, M. Lipson, A.L. Gaeta, K. Bergman, Wavelength multicasting in silicon photonic nanowires. Opt. Express 18(17), 18047–18055 (2010)CrossRefGoogle Scholar
  4. 4.
    W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S.K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)Google Scholar
  5. 5.
    C.S Bres, S. Zlatanovic, A.O.J. Wiberg, J.R. Adleman, C.K. Huynh, E.W. Jacobs, J.M. Kvavle, S. Radic, Parametric photonic channelized rf receiver. IEEE Photonics Technol. Lett. 23(6), 344–346 (2011)Google Scholar
  6. 6.
    C.-S. Brès, S. Zlatanovic, A.O.J. Wiberg, S. Radic, Reconfigurable parametric channelized receiver for instantaneous spectral analysis. Opt. Express 19(4), 3531–3541 (2011)Google Scholar
  7. 7.
    M. Burla, L.R. Cortés, M. Li, X. Wang, L. Chrostowski, J. Azaña, Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express 21(21), 25120–25147 (2013)Google Scholar
  8. 8.
    M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M.R. Khan, A. Leinse, M. Hoekman, R. Heideman, On-chip cmos compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19(22), 21475–21484 (2011)Google Scholar
  9. 9.
    A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C.G. Poulton, S. Fan, S. Madden, B. Luther-Davies, B.J. Eggleton, Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Opt. Express 20(17), 18836–18845 (2012)CrossRefADSGoogle Scholar
  10. 10.
    C. Caloz, S. Gupta, Q. Zhang, B. Nikfal, Analog signal processing: a possible alternative or complement to dominantly digital radio schemes. IEEE Microwave Mag. 14(6), 87–103 (2013)Google Scholar
  11. 11.
    J. Capmany, D. Novak, Microwave photonics combines two worlds. Nat. Photonics 1(6), 319–330 (2007)CrossRefADSGoogle Scholar
  12. 12.
    J. Capmany, B. Ortega, D. Pastor, S. Sales, Discrete-time optical processing of microwave signals. J. Lightwave Technol. 23(2), 702 (2005)CrossRefADSGoogle Scholar
  13. 13.
    L.R. Chen, J. Li, M. Spasojevic, R. Adams, Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters. Opt. Express 21(17), 19624–19633 (2013)CrossRefADSGoogle Scholar
  14. 14.
    S. Chin, L. Thévenaz, Tunable photonic delay lines in optical fibers. Laser Photonics Rev. 6(6), 724–738 (2012)Google Scholar
  15. 15.
    S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, D. Dolfi, Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Opt. Express 18(21), 22599–22613 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Cox, E. Ackerman, R. Helkey, G.E. Betts, Techniques and performance of intensity-modulation direct-detection analog optical links. IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997)Google Scholar
  17. 17.
    C.H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  18. 18.
    C.H. Cox, E.I. Ackerman, G.E. Betts, J.L. Prince, Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006)Google Scholar
  19. 19.
    B.J. Eggleton, C.G. Poulton, R. Pant, Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5(4), 536–587 (2013)CrossRefGoogle Scholar
  20. 20.
    B.J. Eggleton, T.D. Vo, R. Pant, J. Schr, M.D. Pelusi, D.Y. Choi, S.J. Madden, B. Luther-Davies, Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photonics Rev. 6(1), 97–114 (2012)Google Scholar
  21. 21.
    M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, M. Qi, Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics 4(2), 117–122 (2010)Google Scholar
  22. 22.
    J. Kim, W.J. Sung, O. Eknoyan, C.K. Madsen, Linear photonic frequency discriminator on as2s3-ring-on-ti:linbo3 hybrid platform. Opt. Express 21(21), 24566–24573 (2013)CrossRefADSGoogle Scholar
  23. 23.
    A. Loayssa, F.J. Lahoz, Broad-band rf photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technol. Lett. 18(1), 208–210 (2006)Google Scholar
  24. 24.
    D. Marpaung, B. Morrison, R. Pant, D.Y. Choi, S. Madden, B. Luther-Davies, B.J. Eggleton, A tunable rf photonic notch filter with record 55 db suppression using sub-1 db on-chip Brillouin gain. in Frontiers in Optics 2013 Postdeadline. Opt. Soc. A., p. FW6B.9 (2013)Google Scholar
  25. 25.
    D. Marpaung, M. Pagani, B. Morrison, B.J. Eggleton, Nonlinear integrated microwave photonics. J. Lightwave Technol. 32(20), 3421–3427 (2014)Google Scholar
  26. 26.
    D. Marpaung, B. Morrison, R. Pant, B.J. Eggleton, Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt. Lett. 38(21), 4300–4303 (2013)CrossRefADSGoogle Scholar
  27. 27.
    D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, B.J. Eggleton, Si3n4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21(20), 23286–23294 (2013)CrossRefADSGoogle Scholar
  28. 28.
    D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Integrated microwave photonics. Laser Photonics Rev. 7(4), 506–538 (2013)Google Scholar
  29. 29.
    J.D. McKinney, M. Godinez, V.J. Urick, S. Thaniyavarn, W. Charczenko, K.J. Williams, Sub-10-dB noise figure in a multiple-GHz analog optical link. IEEE Photonics Technol. Lett. 19(7), 465–467 (2007)Google Scholar
  30. 30.
    A. Meijerink, C.G.H. Roeloffzen, R. Meijerink, L. Zhuang, D.A.I. Marpaung, M.J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, W. van Etten, Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part i: design and performance analysis. J. Lightwave Technol. 28(1), 3–18 (2010)CrossRefGoogle Scholar
  31. 31.
    R.A. Minasian, Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54(2, Part 2), 832–846 (2006)Google Scholar
  32. 32.
    B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, B.J. Eggleton, Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering. Opt. Commun. 313, 85–89 (2014)CrossRefADSGoogle Scholar
  33. 33.
    D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson, New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7(8), 597–607 (2014)CrossRefADSGoogle Scholar
  34. 34.
    W. Ng, A.A. Walston, G.L. Tangonan, J.J. Lee, I.L. Newberg, N. Bernstein, The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE Trans. Microw. Theory Tech. 9(9), 1124–1131 (1991)Google Scholar
  35. 35.
    Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005)CrossRefADSGoogle Scholar
  36. 36.
    M. Pagani, D. Marpaung, D.Y. Choi, S.J. Madden, B. Luther-Davies, B.J. Eggleton, On-chip wideband tunable rf photonic phase shifter based on stimulated Brillouin scattering. in Proc.OptoElectronics and Communications Conference (OECC), pp. 51–54 (2014)Google Scholar
  37. 37.
    M. Pagani, D. Marpaung, B. Morrison, B.J. Eggleton, Bandwidth tunable, high suppression rf photonic filter with improved insertion loss. in CLEO: 2014, p. STu2G.7. Opt. Soc. Am. (2014)Google Scholar
  38. 38.
    R. Pant, A. Byrnes, C.G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, B.J. Eggleton, Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Opt. Lett. 37(5), 969–971 (2012)CrossRefADSGoogle Scholar
  39. 39.
    R. Pant, D. Marpaung, I.V. Kabakova, B. Morrison, C.G. Poulton, B.J. Eggleton, On-chip stimulated Brillouin scattering for microwave signal processing and generation. Laser Photonics Rev. 8(5), 653–666 (2014)Google Scholar
  40. 40.
    R. Pant, C.G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S.J. Madden, B.J. Eggleton, On-chip stimulated Brillouin scattering. Opt. Express 19(9), 8285–8290 (2011)CrossRefADSGoogle Scholar
  41. 41.
    M.S. Rasras, C.K. Madsen, M.A. Cappuzzo, E. Chen, L.T. Gomez, E.J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S.S. Patel, Integrated resonance-enhanced variable optical delay lines. IEEE Photonics Technol. Lett. 17(4), 834–836 (2005)CrossRefADSGoogle Scholar
  42. 42.
    C.G.H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R.G. Heideman, P.W.L. van Dijk, R.M. Oldenbeuving, D.A.I. Marpaung, M. Burla, K.J. Boller, Silicon nitride microwave photonic circuits. Opt. Express 21(19), 22937–22961 (2013)Google Scholar
  43. 43.
    J.E. Roman, L.T. Nichols, K.J. Wiliams, R.D. Esman, G.C. Tavik, M. Livingston, M.G. Parent, Fiber-optic remoting of an ultrahigh dynamic range radar. IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998)Google Scholar
  44. 44.
    A.J. Seeds, K.J. Williams, Microwave photonics. J. Lightwave Tech. 24(12), 4628–4641 (2006)CrossRefADSGoogle Scholar
  45. 45.
    A.J. Seeds, Microwave photonics. IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002)Google Scholar
  46. 46.
    H. Shin, W. Qiu, R. Jarecki, J.A. Cox, R.H. Olsson, A. Starbuck, Z. Wang, P.T. Rakich, Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4 (2013). doi:10.1038/ncomms2943
  47. 47.
    K.Y. Song, M.G. Herráez, L. Thévenaz, Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express 13(1), 82–88 (2005)CrossRefADSGoogle Scholar
  48. 48.
    K. Tan, D. Marpaung, R. Pant, F. Gao, E. Li, J. Wang, D.-Y. Choi, S. Madden, B. Luther-Davies, J. Sun, B.J. Eggleton, Photonic-chip-based all-optical ultra-wideband pulse generation via xpm and birefringence in a chalcogenide waveguide. Opt. Express 21(2), 2003–2011 (2013)CrossRefADSGoogle Scholar
  49. 49.
    V.J. Urick, M.S. Rogge, F. Bucholtz, K.J. Williams, Wideband (0.045–6.25 GHz) 40 km analogue fibre-optic link with ultra-high (>40 dB) all-photonic gain. Electron. Lett. 42(9), 552–553 (2006)CrossRefGoogle Scholar
  50. 50.
    B. Vidal, J. Palaci, J. Capmany, Reconfigurable photonic microwave filter based on four-wave mixing. IEEE Photonics J. 4(3), 759–764 (2012)CrossRefGoogle Scholar
  51. 51.
    B. Vidal, M.A. Piqueras, J. Martí, Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett. 32(1), 23–25 (2007)CrossRefADSGoogle Scholar
  52. 52.
    A.E. Willner, O.F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S.R. Nuccio, Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011)Google Scholar
  53. 53.
    J. Yao, Microwave photonics. IEEE Photonics Technol. Lett. 27(3), 314–335 (2009)Google Scholar
  54. 54.
    J. Yao, Microwave photonics arbitrary waveform generation. Nat. Photonics 4(2), 79–80 (2010)Google Scholar
  55. 55.
    J. Zhang, A.N. Hone, T.E. Darcie, Limitation due to signal-clipping in linearized microwave-photonic links. IEEE Photonics Technol. Lett. 19(14), 1033–1035 (2007)Google Scholar
  56. 56.
    W. Zhang, R.A Minasian, Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011)Google Scholar
  57. 57.
    W. Zhang, R.A Minasian, Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 24(14), 1182–1184 (2012)Google Scholar
  58. 58.
    L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, C. Roeloffzen. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photonics Rev. 7(6), 994–1002 (2013)Google Scholar
  59. 59.
    L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, Low-loss, high-index-contrast si3n4/sio2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express 19(23), 23162–23170 (2011)CrossRefADSGoogle Scholar
  60. 60.
    L. Zhuang, C.G.H. Roeloffzen, A. Meijerink, M. Burla, D.A.I. Marpaung, A. Leinse, M. Hoekman, R.G. Heideman, W. van Etten, Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part ii: Experimental prototype. J. Lightwave Technol. 28(1), 19–31 (2010)Google Scholar
  61. 61.
    H. Zmuda, R.A. Soref, P. Payson, S. Johns, E.N. Toughlian, Photonic beamformer for phased array antennas using a fiber grating prism. IEEE Photonics Technol. Lett. 9(2), 241–243 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Marpaung
    • 1
  • Ravi Pant
    • 1
  • Benjamin J. Eggleton
    • 1
  1. 1.Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), School of PhysicsInstitute of Photonics and Optical Science (IPOS), University of SydneyCamperdownAustralia

Personalised recommendations