Towards an IT-Based Coordination Platform for the German Emergency Medical Service System

  • Melanie Reuter-Oppermann
  • Johannes Kunze von Bischhoffshausen
  • Peter Hottum
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 201)

Abstract

The German healthcare service system is facing a number of challenges in the years to come, prominent among these a decreasing number of hospitals and practices dealing with an increasing number of treatments and patient transportation tasks. In this paper, we introduce the idea of building a decision support tool to improve scheduling of patient transportation in the German Emergency Medical Service (EMS) system to reduce waiting times and costs, as well as increasing reliability. We outline a service platform on which the decision support tool could be realized and integrated with existing systems in EMS coordination centers. The paper thus introduces a promising approach for one of the main challenges of the German EMS system and builds the basis for further research on transport scheduling and healthcare services.

Keywords

IT-based platform Patient transport German EMS system Healthcare logistics services 

References

  1. 1.
    Arnott, D., Pervan, G.: Eight key issues for the decision support systems discipline. Decis. Support Syst. 44, 657–672 (2008)CrossRefGoogle Scholar
  2. 2.
    Beaudry, A., Laporte, G., Melo, T., Nickel, S.: Dynamic transportation of patients in hospitals. OR Spectr. 32, 77–107 (2010)CrossRefGoogle Scholar
  3. 3.
    Berner, E.S.: Clinical Decision Support Systems. Springer Science+Business Media, LLC, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Bölt, U., Graf, T.: 20 Jahre Krankenhausstatistik, Statistisches Bundesamt, Wirtschaft und Statistik (2012)Google Scholar
  5. 5.
    Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  6. 6.
    Cordeau, J.-F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153, 29–46 (2007)CrossRefGoogle Scholar
  7. 7.
    Cordeau, J.-F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B: Methodol. 37, 579–594 (2003)CrossRefGoogle Scholar
  8. 8.
    DRK Position Paper 2012. Die Zukunft des Rettungsdienstes in Baden-Württemberg (2012)Google Scholar
  9. 9.
    Eom, S., Kim, E.: A survey of decision support system applications (1995–2001). J. Oper. Res. Soc. 57, 1264–1278 (2006)CrossRefGoogle Scholar
  10. 10.
    Gies, T.: Methoden zur Aktualisierung einer Client- / Server-Software im laufenden Betrieb, seminar thesis, FH Aachen (2013)Google Scholar
  11. 11.
    Hottum, P., Schaff, M., Müller-Gorchs, M., Howahl, F., Görlitz, R.: Capturing and measuring quality and productivity in healthcare service systems, In: Proceedings of the 21st International RESER Conference (2011)Google Scholar
  12. 12.
    Mendoza, J.E., Medaglia, A.L., Velasco, N.: An evolutionary-based decision support system for vehicle routing: the case of a public utility. Decis. Support Syst. 46, 730–742 (2009)CrossRefGoogle Scholar
  13. 13.
    Parragh, S., Cordeau, J.-F., Doerner, K., Hartl, R.: Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR Spectr. 34, 593–633 (2012)CrossRefGoogle Scholar
  14. 14.
    Parragh, S.: Ambulance routing problems with rich constraints and multiple objectives. Dissertation, Fakultät für Wirtschaftswissenschaften. Universität Wien, Vienna (2009)Google Scholar
  15. 15.
    Ritzinger, U., Puchinger, J., Hartl, R.F.: Real-world patient transportation. In: ODYSSEUS 2012 5th International Workshop on Freight Transportation and Logistics (2012)Google Scholar
  16. 16.
    Ruiz, R., Maroto, C., Alcaraz, J.: A decision support system for a real vehicle routing problem. Eur. J. Oper. Res. 153, 593–606 (2004)CrossRefGoogle Scholar
  17. 17.
    Schilde, M., Doerner, K.F., Hartl, R.F.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Comput. Oper. Res. 38, 1719–1730 (2011)CrossRefGoogle Scholar
  18. 18.
    Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service systems. IEEE Comput. Soc. 40, 71–77 (2007)CrossRefGoogle Scholar
  19. 19.
    Tarantilis, C.D., Kiranoudis, C.T.: Using a spatial decision support system for solving the vehicle routing problem. Inf. Manag. 39, 359–375 (2002)CrossRefGoogle Scholar
  20. 20.
    The Federal Health Monitoring System (2011). http://www.gbe-bund.de/. Accessed Jan 2013
  21. 21.
    The Federal Health Monitoring System (2012). http://www.gbe-bund.de/. Accessed Jan 2013
  22. 22.
    Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J. Mark. 68(1), 1–17 (2004)CrossRefGoogle Scholar
  23. 23.
    World Health Organization (2012). http://data.euro.who.int/hfadb/. Accessed Aug 2014
  24. 24.
    Yoon, S.W., Velasquez, J.D., Partridge, B.K., Nof, S.Y.: Transportation security decision support system for emergency response: a training prototype. Decis. Support Syst. 46, 139–148 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Melanie Reuter-Oppermann
    • 1
  • Johannes Kunze von Bischhoffshausen
    • 1
  • Peter Hottum
    • 1
  1. 1.Karlsruhe Service Research Institute (KSRI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations