Towards an IT-Based Coordination Platform for the German Emergency Medical Service System

  • Melanie Reuter-Oppermann
  • Johannes Kunze von Bischhoffshausen
  • Peter Hottum
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 201)


The German healthcare service system is facing a number of challenges in the years to come, prominent among these a decreasing number of hospitals and practices dealing with an increasing number of treatments and patient transportation tasks. In this paper, we introduce the idea of building a decision support tool to improve scheduling of patient transportation in the German Emergency Medical Service (EMS) system to reduce waiting times and costs, as well as increasing reliability. We outline a service platform on which the decision support tool could be realized and integrated with existing systems in EMS coordination centers. The paper thus introduces a promising approach for one of the main challenges of the German EMS system and builds the basis for further research on transport scheduling and healthcare services.


IT-based platform Patient transport German EMS system Healthcare logistics services 


  1. 1.
    Arnott, D., Pervan, G.: Eight key issues for the decision support systems discipline. Decis. Support Syst. 44, 657–672 (2008)CrossRefGoogle Scholar
  2. 2.
    Beaudry, A., Laporte, G., Melo, T., Nickel, S.: Dynamic transportation of patients in hospitals. OR Spectr. 32, 77–107 (2010)CrossRefGoogle Scholar
  3. 3.
    Berner, E.S.: Clinical Decision Support Systems. Springer Science+Business Media, LLC, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Bölt, U., Graf, T.: 20 Jahre Krankenhausstatistik, Statistisches Bundesamt, Wirtschaft und Statistik (2012)Google Scholar
  5. 5.
    Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  6. 6.
    Cordeau, J.-F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153, 29–46 (2007)CrossRefGoogle Scholar
  7. 7.
    Cordeau, J.-F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B: Methodol. 37, 579–594 (2003)CrossRefGoogle Scholar
  8. 8.
    DRK Position Paper 2012. Die Zukunft des Rettungsdienstes in Baden-Württemberg (2012)Google Scholar
  9. 9.
    Eom, S., Kim, E.: A survey of decision support system applications (1995–2001). J. Oper. Res. Soc. 57, 1264–1278 (2006)CrossRefGoogle Scholar
  10. 10.
    Gies, T.: Methoden zur Aktualisierung einer Client- / Server-Software im laufenden Betrieb, seminar thesis, FH Aachen (2013)Google Scholar
  11. 11.
    Hottum, P., Schaff, M., Müller-Gorchs, M., Howahl, F., Görlitz, R.: Capturing and measuring quality and productivity in healthcare service systems, In: Proceedings of the 21st International RESER Conference (2011)Google Scholar
  12. 12.
    Mendoza, J.E., Medaglia, A.L., Velasco, N.: An evolutionary-based decision support system for vehicle routing: the case of a public utility. Decis. Support Syst. 46, 730–742 (2009)CrossRefGoogle Scholar
  13. 13.
    Parragh, S., Cordeau, J.-F., Doerner, K., Hartl, R.: Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR Spectr. 34, 593–633 (2012)CrossRefGoogle Scholar
  14. 14.
    Parragh, S.: Ambulance routing problems with rich constraints and multiple objectives. Dissertation, Fakultät für Wirtschaftswissenschaften. Universität Wien, Vienna (2009)Google Scholar
  15. 15.
    Ritzinger, U., Puchinger, J., Hartl, R.F.: Real-world patient transportation. In: ODYSSEUS 2012 5th International Workshop on Freight Transportation and Logistics (2012)Google Scholar
  16. 16.
    Ruiz, R., Maroto, C., Alcaraz, J.: A decision support system for a real vehicle routing problem. Eur. J. Oper. Res. 153, 593–606 (2004)CrossRefGoogle Scholar
  17. 17.
    Schilde, M., Doerner, K.F., Hartl, R.F.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Comput. Oper. Res. 38, 1719–1730 (2011)CrossRefGoogle Scholar
  18. 18.
    Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service systems. IEEE Comput. Soc. 40, 71–77 (2007)CrossRefGoogle Scholar
  19. 19.
    Tarantilis, C.D., Kiranoudis, C.T.: Using a spatial decision support system for solving the vehicle routing problem. Inf. Manag. 39, 359–375 (2002)CrossRefGoogle Scholar
  20. 20.
    The Federal Health Monitoring System (2011). Accessed Jan 2013
  21. 21.
    The Federal Health Monitoring System (2012). Accessed Jan 2013
  22. 22.
    Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J. Mark. 68(1), 1–17 (2004)CrossRefGoogle Scholar
  23. 23.
    World Health Organization (2012). Accessed Aug 2014
  24. 24.
    Yoon, S.W., Velasquez, J.D., Partridge, B.K., Nof, S.Y.: Transportation security decision support system for emergency response: a training prototype. Decis. Support Syst. 46, 139–148 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Melanie Reuter-Oppermann
    • 1
  • Johannes Kunze von Bischhoffshausen
    • 1
  • Peter Hottum
    • 1
  1. 1.Karlsruhe Service Research Institute (KSRI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations