A Routing Calculus with Flooding Updates

  • Manish Gaur
  • Simon J. Gay
  • Ian Mackie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8956)


We propose a process calculus which explicitly models routing in a distributed computer network. We define a model which consists of a network of routers where the topology of routers is fixed. The calculus has three syntactic categories namely processes, nodes and systems. Processes reside in nodes which are connected to a specific routers which forms a system. Upon creation of new nodes, the routing tables are updated using flooding method. We show that the proposed routing calculi is reduction equivalent to its specification asynchronous distributed pi-calculus (ADpi). We believe that such modeling helps in prototyping the distributed routing algorithms.


Routing Process Calculi Flooding Specification Computational Cost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: A calculus of bounded capacities. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 205–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press (2003)Google Scholar
  4. 4.
    Gaur, M., Hennessy, M.: Counting the cost in the picalculus (extended abstract). Electronic Notes in Theoretical Computer Science (ENTCS) 229(3), 117–129 (2009)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gay, S.J., Hole, M.: Subtyping for session types in the pi-calculus. Acta Inf. 42(2-3), 191–225 (2005)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Griffin, T.G., Sobrinho, J.L.: Metarouting. In: SIGCOMM, pp. 1–12 (2005)Google Scholar
  7. 7.
    Hennessy, M.: A distributed Pi-Calculus. Cambridge University Press (2007)Google Scholar
  8. 8.
    Hennessy, M., Rathke, J.: Typed behavioural equivalences for processes in the presence of subtyping. Mathematical Structures in Computer Science 14(5), 651–684 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Milner, R.: Communicating and mobile systems: The π-Calculus. Cambridge University Press (1999)Google Scholar
  10. 10.
    Nicola, R.D., Gorla, D., Pugliese, R.: Basic observables for a calculus for global computing. Inf. Comput. 205(10), 1491–1525 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Orava, F., Parrow, J.: An algebraic verification of a mobile network. Formal Asp. Comput. 4(6), 497–543 (1992)CrossRefMATHGoogle Scholar
  12. 12.
    Sewell, P., Wojciechowski, P.T., Pierce, B.C.: Location-independent communication for mobile agents: A two-level architecture. In: Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) ICCL 1998 Workshop. LNCS, vol. 1686, pp. 1–31. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Tanenbaum, A.S.: Computer Networks. Pearson Education, Inc., Upper Saddle River (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manish Gaur
    • 1
    • 2
  • Simon J. Gay
    • 2
  • Ian Mackie
    • 3
  1. 1.Department of Computer Sc and EnggIET LucknowIndia
  2. 2.School of Computing ScienceUniversity of GlasgowGlasgowUK
  3. 3.LIX, École PolytechniquePalaiseau CedexFrance

Personalised recommendations