Spectral (Re)construction of Urban Street Networks: Generative Design Using Global Information from Structure

Abstract

Modeling and analysis of urban form is typically performed using local generative design techniques, (e.g., shape grammars), with closed sets of local rules operating on elements. While this approach is powerful, the open variety of possible non-unique choices over the element and rule sets does not answer an important closure question: How much information, i.e., how many elements and rules, exhaustively capture all the information on structure? This paper investigates the inverted principle: using global system information to reconstruct a design. We show that orthogonal eigenmodes of a street network’s adjacency matrix capture global system information, and can be used to exactly reconstruct these networks. Further, by randomly perturbing the eigenmodes, new street networks of similar typology are generated. Thus, eigenmodes are global generators of structure. Outcomes provide new mechanisms for measuring and describing typology, morphology, and urban structure, and new future directions for generative design using global system information.

References

  1. 1.
    Batty M (2013) The new science of cities. MIT Press, Cambridge, MAGoogle Scholar
  2. 2.
    Barthelemy M et al (2013) Self-organization versus top-down planning in the evolution of a city. Nat Sci Rep 3:Article no. 2153Google Scholar
  3. 3.
    Strano E et al (2013) Elementary processes governing the evolution of road networks. Nat Sci Rep 2:Article no. 296Google Scholar
  4. 4.
    Kostof S (1999) The city shaped: urban patterns and meanings through history. Thames and Hudson, New YorkGoogle Scholar
  5. 5.
    Kostof S (2005) The city assembled: elements of urban form through history. Thames and Hudson, New YorkGoogle Scholar
  6. 6.
    Rossi A (1984) The architecture of the city. MIT Press, Cambridge, MAGoogle Scholar
  7. 7.
    Alexander C (1977) A pattern language: towns, buildings, construction. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Alexander C (1966) A city is not a tree. Design, London, Council of Industrial Design:No. 206Google Scholar
  9. 9.
    Hillier B, Hanson J (1984) The social logic of space. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Batty M (2007) Cities and complexity: understanding cities with cellular automata, agent based models, and fractals. MIT Press, Cambridge, MAGoogle Scholar
  11. 11.
    Batty M, Longley P (1994) Fractal cities: a geometry of form and function. Academic, San DiegoMATHGoogle Scholar
  12. 12.
    Stiny G (1980) Introduction to shape and shape grammars. Environ Plan B: Plan Des 7:343–351CrossRefGoogle Scholar
  13. 13.
    Stiny G, Mitchell WJ (1978) The Palladian grammar. Environ Plan B: Plan Des 5:5–18CrossRefGoogle Scholar
  14. 14.
    Duarte JP, Rocha JM, Soares GD (2007) Unveiling the structure of the Marrakech Medina: a shape grammar and an interpreter for generating urban form. Artif Intell Eng Des Anal Manuf 21:317–349CrossRefGoogle Scholar
  15. 15.
    Haggett P, Chorley RJ (1969) Network analysis in geography. Edward Arnold, LondonGoogle Scholar
  16. 16.
    Porta S, Crucitti P, Latora V (2006) The network analysis of urban streets: a primal approach. Environ Plan B: Plan Des 33(5):705–725CrossRefGoogle Scholar
  17. 17.
    Porta S et al (2009) Street centralities and densities of retail and services in Bologna. Environ Plan B: Plan Des 36:450–465CrossRefGoogle Scholar
  18. 18.
    Barthelemy M (2011) Spatial networks. Phys Rep 499:1–101CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sarkar S (2013) Street network analysis for understanding typology in cities: case study on Sydney CBD and suburbs. In: State of Australian Cities (SOAC) Conference. Sydney, AustraliaGoogle Scholar
  20. 20.
    Hanna S (2012) A representational scheme for the extraction of urban genotypes. In: Gero JS (ed) Design computing and cognition. SpringerGoogle Scholar
  21. 21.
    Hanna S (2012) Comparative analysis of neighborhoods using local graph spectra. In: Eighth International Space Syntax Symposium. Santiago, ChileGoogle Scholar
  22. 22.
    Hanna S (2007) Representation and generation of plans using graph spectra. In: Sixth International Space Syntax Symposium, Istanbul, TurkeyGoogle Scholar
  23. 23.
    Newman MEJ (2010) Networks: an introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. 24.
    Sarkar S, Dong A (2011) Community detection in graphs using singular value decomposition. Phys Rev E 83(4):046114CrossRefGoogle Scholar
  25. 25.
    Sarkar S, Henderson JA, Robinson PA (2013) Spectral characterization of hierarchical network modularity and limits of modularity detection. PLoS One 8(1):e54383CrossRefGoogle Scholar
  26. 26.
    Sarkar S et al (2013) Spectral characterization of hierarchical modularity in product architectures. J Mech Des 136(1), 011006CrossRefGoogle Scholar
  27. 27.
    Sarkar S, Dong A, Gero JS (2009) Design optimization problem reformulation using singular value decomposition. J Mech Des 131(8), 081006CrossRefGoogle Scholar
  28. 28.
    Sarkar S, Dong A, Gero JS (2009) Learning symbolic formulations in design: syntax, semantics, and knowledge reification. Artif Intell Eng Des Anal Manuf 24(1):63–85CrossRefGoogle Scholar
  29. 29.
    Arenas A, Diaz-Guilera AA, Perez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96(11):114102CrossRefGoogle Scholar
  30. 30.
    Liu D, Wang H, Van Mieghem P (2010) Spectral perturbation and reconstructability of complex networks. Phys Rev E 81, 016101CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of SydneySydneyAustralia

Personalised recommendations