Workshop on Computer Games

CGW 2014: Computer Games pp 90-104 | Cite as

On the Complexity of General Game Playing

  • Édouard Bonnet
  • Abdallah Saffidine
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 504)

Abstract

The Game Description Language (GDL) used in General Game Playing (GGP) competitions provides a compact way to express multi-agents systems. Multiple features of GDL contribute to making it a convenient tool to describe multi-agent systems. We study the computational complexity of reasoning in GGP using various combinations of these features. Our analysis offers a complexity landscape for GGP with fragments ranging from np to expspace in the single-agent case, and from pspace to 2exptime in the multi-agent case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial Intelligence 69(1), 165–204 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  4. 4.
    Genesereth, M., Love, N.: General Game Playing: Overview of the AAAI competition. AI Magazine 26, 62–72 (2005)Google Scholar
  5. 5.
    Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Comput. 6(4), 675–695 (1977)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General Game Playing: Game Description Language specification. Tech. rep., LG-2006-01, Stanford Logic Group (2006)Google Scholar
  7. 7.
    Papadimitriou, C.H.: Games against nature. Journal of Computer and System Sciences 31(2), 288–301 (1985)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  9. 9.
    Rintanen, J.: Complexity of planning with partial observability. In: 14th International Conference on Automated Planning and Scheduling (ICAPS), pp. 345–354. AAAI Press (2004)Google Scholar
  10. 10.
    Ruan, J., Van der Hoek, W., Wooldridge, M.: Verification of games in the Game Description Language. Journal of Logic and Computation 19(6), 1127–1156 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schiffel, S., Thielscher, M.: A multiagent semantics for the Game Description Language. In: Filipe, J., Fred, A., Sharp, B. (eds.) Agents and Artificial Intelligence (ICAART). CCIS, vol. 67, pp. 44–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Thielscher, M.: A general Game Description Language for incomplete information games. In: 24th AAAI Conference on Artificial Intelligence (AAAI), pp. 994–999. AAAI Press, Atlanta (2010)Google Scholar
  14. 14.
    Thielscher, M.: The general Game playing Description Language is universal. In: 22nd International Joint Conference on Artificial Intelligence, pp. 1107–1112. IJCAI (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Édouard Bonnet
    • 1
  • Abdallah Saffidine
    • 2
  1. 1.Lamsade Universit Paris-DauphineFrance
  2. 2.School of Computer Science and EngineeringThe University of New South WalesAustralia

Personalised recommendations