Advertisement

Using the Fourth Dimension to Distinguish Between Structures for Anisotropic Diffusion Filtering in 4D CT Perfusion Scans

  • Adriënne M. Mendrik
  • Evert-jan Vonken
  • Theo Witkamp
  • Mathias Prokop
  • Bram van Ginneken
  • Max. A. Viergever
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8682)

Abstract

High resolution 4D (3D+time) cerebral CT perfusion (CTP) scans can be used to create 3D arteriograms (showing only arteries) and venograms (only veins). However, due to the low X-ray radiation dose used for acquiring the CTP scans, they are inherently noisy. In this paper, we propose a time intensity profile similarity (TIPS) anisotropic diffusion method that uses the 4th dimension to distinguish between structures, for reducing noise and enhancing arteries and veins in 4D CTP scans. The method was evaluated on 20 patient CTP scans. An observer study was performed by two radiologists, assessing the arteries and veins in arteriograms and venograms derived from the filtered CTP data, compared to those derived from the original data. Results showed that arteriograms and venograms derived from the filtered CTP data showed more and better visualized small arteries and veins in the majority of the 20 evaluated CTP scans. In conclusion, arteries and veins are separately enhanced and noise is reduced by using the time-intensity profile similarity (fourth dimension) to distinguish between structures for anisotropic diffusion filtering in 4D CT perfusion scans.

Keywords

Structure Tensor Fourth Dimension Diographic Image Anisotropic Hybrid Multiscale Vessel Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wintermark, M.: Brain perfusion-CT in acute stroke patients. Eur. Radiol. 15(suppl. 4), D28–D31 (2005)Google Scholar
  2. 2.
    Zhu, G., Michel, P., Aghaebrahim, A., Patrie, J.T., Xin, W., Eskandari, A., Zhang, W., Wintermark, M.: Computed tomography workup of patients suspected of acute ischemic stroke perfusion computed tomography adds value compared with clinical evaluation, noncontrast computed tomography, and computed tomography angiogram in terms of predicting outcome. Stroke 44(4), 1049–1055 (2013)CrossRefGoogle Scholar
  3. 3.
    Salomon, E.J., Barfett, J., Willems, P.W., Geibprasert, S., Bacigaluppi, S., Krings, T.: Dynamic ct angiography and ct perfusion employing a 320-detector row ct. Clinical Neuroradiology 19(3), 187–196 (2009)CrossRefGoogle Scholar
  4. 4.
    Mendrik, A.M., Vonken, E.P., van Ginneken, B., Smit, E.J., Waaijer, A., Bertolini, G., Viergever, M.A., Prokop, M.: Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral ct perfusion scans. Med. Phys. 37(6), 2956–2966 (2010)CrossRefGoogle Scholar
  5. 5.
    Mendrik, A.M., Vonken, E.P., de Kort, G.A., van Ginneken, B., Smit, E.J., Viergever, M.A., Prokop, M.: Improved arterial visualization in cerebral ct perfusion-derived arteriograms compared with standard ct angiography: A visual assessment study. American Journal of Neuroradiology 33(11), 2171–2177 (2012)CrossRefGoogle Scholar
  6. 6.
    Smit, E.J., Vonken, E., van der Schaaf, I.C., Mendrik, A.M., Dankbaar, J.W., Horsch, A.D., van Seeters, T., van Ginneken, B., Prokop, M.: Timing-invariant reconstruction for deriving high-quality ct angiographic data from cerebral ct perfusion data. Radiology 263(1), 216–225 (2012)CrossRefGoogle Scholar
  7. 7.
    Kosior, J.C., Kosior, R.K., Frayne, R.: Robust dynamic susceptibility contrast MR perfusion using 4D nonlinear noise filters. J. Magn. Reson. Imaging 26(6), 1514–1522 (2007)Google Scholar
  8. 8.
    Gal, Y., Mehnert, A.J.H., Bradley, A.P., McMahon, K., Kennedy, D., Crozier, S.: Denoising of dynamic contrast-enhanced mr images using dynamic nonlocal means. IEEE Trans. Med. Imaging 29(2), 302–310 (2010)CrossRefGoogle Scholar
  9. 9.
    Mendrik, A.M., Vonken, E., van Ginneken, B., de Jong, H.W., Riordan, A., van Seeters, T., Smit, E.J., Viergever, M.A., Prokop, M.: Tips bilateral noise reduction in 4d ct perfusion scans produces high-quality cerebral blood flow maps. Physics in Medicine and Biology 56(13), 3857 (2011)CrossRefGoogle Scholar
  10. 10.
    Weickert, J.: A Review of Nonlinear Diffusion Filtering. Scale-Space Theory in Computer Vision. LNCS. vol. 1252, pp. 3–28 (1997)Google Scholar
  11. 11.
    Weickert, J.: Anisotropic diffusion in image processing. B.G. Teubner, Stuttgart (1998)zbMATHGoogle Scholar
  12. 12.
    Montagnat, J., Sermesant, M., Delingette, H., Malandain, G., Ayache, N.: Anisotropic Filtering for Model Based Segmentation of 4D Cylindrical Echocardiographic Images. Pattern Recognition Letters 24, 815–828 (2002)CrossRefGoogle Scholar
  13. 13.
    Sanchez-Ortiz, G.I., Rueckert, D., Burger, P.: Knowledge-based tensor anisotropic diffusion of cardiac magnetic resonance images. Medical Image Analysis 3(1), 77–101 (1999)CrossRefGoogle Scholar
  14. 14.
    Tauber, C., Stute, S., Chau, M., Spiteri, P., Chalon, S., Guilloteau, D., Buvat, I.: Spatio-temporal diffusion of dynamic pet images. Physics in Medicine and Biology 56(20), 6583 (2011)CrossRefGoogle Scholar
  15. 15.
    Mendrik, A.M., Vonken, E.J., Rutten, A., Viergever, M.A., van Ginneken, B.: Noise reduction in computed tomography scans using 3-d anisotropic hybrid diffusion with continuous switch. IEEE Trans. Med. Imaging 28(10), 1585–1594 (2009)CrossRefGoogle Scholar
  16. 16.
    Enquobahrie, A., Yang, H., Aylward, S.: Implementation of Local Structure Tensor and Enhancement Anisotropic Diffusion Filters in ITK. The Insight Journal 8 (2010)Google Scholar
  17. 17.
    Weickert, J.: Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision 31(2–3), 111–127 (1999)CrossRefGoogle Scholar
  18. 18.
    Weickert, J., Scharr, H.: A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance. Journal of Visual Communication and Image Representation 13(1–2), 103–118 (2002)CrossRefGoogle Scholar
  19. 19.
    Altman, D.G.: Practical Statistics for Medical Research (Statistics texts). 1 edn. Chapman & Hall (November 1990)Google Scholar
  20. 20.
    Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: A scale space representation of vessel structures. Medical Image Analysis 10(6), 815–825 (2006)CrossRefGoogle Scholar
  21. 21.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Adriënne M. Mendrik
    • 1
  • Evert-jan Vonken
    • 2
  • Theo Witkamp
    • 2
  • Mathias Prokop
    • 3
  • Bram van Ginneken
    • 3
  • Max. A. Viergever
    • 1
  1. 1.Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Radiology DepartmentUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Radboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations