Prefrontal Cortical Folding of the Preterm Brain: A Longitudinal Analysis of Preterm-Born Neonates

  • Eliza Orasanu
  • Andrew Melbourne
  • Herve Lombaert
  • Manuel Jorge Cardoso
  • Stian Flage Johnsen
  • Giles S. Kendall
  • Nicola J. Robertson
  • Neil Marlow
  • Sebastien Ourselin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8682)

Abstract

Very preterm birth (less than 32 weeks completed gestation) coincides with a rapid period of brain growth and development. Investigating the changes of certain brain regions may allow the development of biomarkers for predicting neurological outcome. The prefrontal cortex, associated with the executive function, undergoes major changes during the last 10 weeks of pregnancy, and therefore its development may be altered by very-preterm birth. In this paper we use surface-based spectral matching techniques to analyse how the prefrontal cortex develops between 30 weeks and 40 weeks equivalent gestational age in 5 infants born preterm. Using this method, we can accurately map the regions where the secondary and tertiary sulci and gyri of the prefrontal cortex will form. Additionally, measurements of cortical curvature can be used to estimate the local bending energy required to generate the observed pattern of cortical folding. Longitudinal measurement of the cortical folding change can provide information about the mechanical properties of the underlying tissue and may be useful in discriminating mechanical changes during growth in this vulnerable period of development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marlow, N., Wolke, D., Bracewell, M.A., Samara, M.: Neurologic and Developmental Disability at Six Years of Age after Extremely Preterm Birth. New England Journal of Medicine 352(1), 9–19 (2005)CrossRefGoogle Scholar
  2. 2.
    Kapellou, O., Counsell, S.J., Kennea, N., Dyet, L., Saeed, N., Stark, J., Maalouf, E., Duggan, P., Ajayi-Obe, M., Hajnal, J., Allsop, J.M., Boardman, J., Rutherford, M.A., Cowan, F., Edwards, A.D.: Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Medicine 3(8), e265 (2006)CrossRefGoogle Scholar
  3. 3.
    Volpe, J.J.: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurology 8(1), 110–124 (2009)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24, 167–202 (2001)CrossRefGoogle Scholar
  5. 5.
    Chi, J.G., Dooling, E.C., Gilles, F.H.: Gyral development of the human brain. Annals of Neurology 1(1), 86–93 (1977)CrossRefGoogle Scholar
  6. 6.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)CrossRefGoogle Scholar
  7. 7.
    Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8(4), 272–284 (1999)CrossRefGoogle Scholar
  8. 8.
    Yeo, B.T.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Transactions on Medical Imaging 29(3), 650–668 (2010)CrossRefGoogle Scholar
  9. 9.
    Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S.J., Doria, V., Serag, A., Gousias, I.S., Boardman, J.P., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4), 2750–2763 (2011)CrossRefGoogle Scholar
  11. 11.
    Cardoso, M.J., Melbourne, A., Kendall, G.S., Modat, M., Robertson, N.J., Marlow, N., Ourselin, S.: AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI. NeuroImage 65, 97–108 (2013)CrossRefGoogle Scholar
  12. 12.
    Oishi, K., Mori, S., Donohue, P.K., Ernst, T., Anderson, L., Buchthal, S., Faria, A., Jiang, H., Li, X., Miller, M.I., van Zijl, P.C.M., Chang, L.: Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage 56(1), 8–20 (2011)CrossRefGoogle Scholar
  13. 13.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  14. 14.
    Lombaert, H., Grady, L., Polimeni, J., Cheriet, F.: FOCUSR: Feature Oriented Correspondence using Spectral Regularization-A Method for Accurate Surface Matching. PAMI, 1–18 (2012)Google Scholar
  15. 15.
    Joshi, P., Séquin, C.: Energy Minimizers for Curvature-Based Surface Functionals. Computer-Aided Design and Applications 4(5), 607–617 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eliza Orasanu
    • 1
  • Andrew Melbourne
    • 1
  • Herve Lombaert
    • 2
  • Manuel Jorge Cardoso
    • 1
  • Stian Flage Johnsen
    • 1
  • Giles S. Kendall
    • 3
  • Nicola J. Robertson
    • 3
  • Neil Marlow
    • 3
  • Sebastien Ourselin
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.INRIAMicrosoft Research Joint CentrePalaiseauFrance
  3. 3.Academic NeonatologyEGA UCL Institute for Women’s HealthLondonUK

Personalised recommendations