Towards a Generic Language for Scalability Rules

  • Jörg DomaschkaEmail author
  • Kyriakos Kritikos
  • Alessandro Rossini
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 508)


The PaaSage project aims at facilitating the specification and execution of cloud-based applications by leveraging upon model-driven engineering (MDE) techniques and methods, and by exploiting multiple cloud infrastructures and platforms. Models are frequently specified using domain-specific languages (DSLs), which are tailored to a specific domain of concern. In order to cover the necessary aspects of the specification and execution of multi-cloud applications, PaaSage encompasses a family of DSLs called Cloud Application Modelling and Execution Language (CAMEL). In this paper, we present one DSL within this family, namely the Scalability Rules Language (SRL), which can be regarded as a first step towards a generic language for specifying scalability rules for multi-cloud applications.


Model-driven engineering Domain-specific language Metamodel Cloud computing Scalability rule 



The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement number 317715 (PaaSage). We would like to thank the PaaSage consortium and the reviewers for their constructive feedback that improved the quality of this work.


  1. 1.
    Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement). Technical report, Open Grid Forum (March (2007)Google Scholar
  2. 2.
    Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an extensible language for controlling elasticity in cloud applications. In: CCGrid 2013: 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pp. 112–119. IEEE Computer Society (2013)Google Scholar
  3. 3.
    Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud systems with CloudMF. In: Solberg, A., Babar, M.A., Dumas, M., Cuesta, C.E. (eds.) Proceedings of NordiCloud 2013: 2nd Nordic Symposium on Cloud Computing and Internet Technologies, pp. 38–45. ACM (2013)Google Scholar
  4. 4.
    Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In: O’Conner, L. (ed.) Proceedings of CLOUD 2013: IEEE 6th International Conference on Cloud Computing, pp. 887–894. IEEE Computer Society (2013)Google Scholar
  5. 5.
    Galán, F., Vaquero, L.M.: D4.X.1 - Resources and Services Virtualization without Barriers. Reservoir project deliverable, January 2010Google Scholar
  6. 6.
    Jeffery, K., Kirkham, T.: D1.6.1 - Initial Architecture Design. Paasage project deliverable, October 2013Google Scholar
  7. 7.
    Kritikos, K., Korozi, M., Kryza, B., Kirkham, T., Leonidis, A., Magoutis, K., Massonet, P., Ntoa, S., Papaioannou, A., Papoulas, C., Sheridan, C., Zeginis, C.: D4.1.1 - Prototype Metadata Database and Social Network. Paasage project deliverable, March 2014Google Scholar
  8. 8.
    Kritikos, K., Plexousakis, D.: OWL-Q for Semantic QoS-based Web Service Description and Discovery. In: Noia, T.D., Lara, R., Polleres, A., Toma, I., Kawamura, T., Klusch, M., Bernstein, A., Paolucci, M., Leger, A., Martin, D.L. (eds.) SMR\(^{2}\) 2007: Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web, CEUR Workshop Proceedings, vol. 243. CEUR (2007)Google Scholar
  9. 9.
    Moore, L.R., Bean, K., Ellahi, T.: A coordinated reactive and predictive approach to cloud elasticity. In: CLOUD COMPUTING 2013: 4th International Conference on Cloud Computing, GRIDs, and Virtualization. IARIA (2013)Google Scholar
  10. 10.
    Object Management Group: Meta-Object Facility Specification, April 2014.
  11. 11.
    Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configurations using feature models and ontologies. In: MultiCloud 2013: International Workshop on Multi-cloud Applications and Federated Clouds, pp. 21–26. ACM (2013)Google Scholar
  12. 12.
    Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with constraints: a pragmatic approach. In: Kishi, T., Jarzabek, S., Gnesi, S. (eds.) SPLC 2013: 17th International Software Product Line Conference, pp. 162–166. ACM (2013)Google Scholar
  13. 13.
    Quinton, C., Rouvoy, R., Duchien, L.: Leveraging feature models to configure virtual appliances. In: CloudCP 2012: 2nd International Workshop on Cloud Computing Platforms, pp. 2:1–2:6. ACM (2012)Google Scholar
  14. 14.
    Rossini, A., Nikolov, N., Romero, D., Domaschka, J., Kritikos, K., Kirkham, T., Solberg, A.: D2.1.2 - CloudML Implementation Documentation (First version). Paasage project deliverable, April 2014Google Scholar
  15. 15.
    Rossini, A., Solberg, A., Romero, D., Domaschka, J., Magoutis, K., Schubert, L., Ferry, N., Kirkham, T.: D2.1.1 - CloudML Guide and Assesment Report. Paasage project deliverable, October 2013Google Scholar
  16. 16.
    Rumpl, A., Rasheed, H., Waeldrich, O., Ziegler, W.: Service Manifest: Scientific Report. Optimis project deliverable, June 2010Google Scholar
  17. 17.
    Seybold, D.: Design und Implementierung eines skalierenden Database-as-a-Service Systems (in German). Mastersthesis vs-m05-2014, Institute for Distributed Systems, University of Ulm, April 2014Google Scholar
  18. 18.
    Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Professional, Reading (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jörg Domaschka
    • 1
    Email author
  • Kyriakos Kritikos
    • 2
  • Alessandro Rossini
    • 3
  1. 1.Institute of Information Resource ManagementUniversity of UlmUlmGermany
  2. 2.FORTHHeraklionGreece
  3. 3.Department of Networked Systems and ServicesSINTEFOsloNorway

Personalised recommendations