Evolving Point Packings in the Plane

  • Daniel Ashlock
  • Philip Hingston
  • Cameron McGuinness
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8955)


The problem of packing a fixed number of points into a square while maximizing the distance between them is a good test bed for comparing representations for real optimization problems not based on a simple mathematical formula. The problem does permit the applications of forms of gradient search and so allows simple and hybrid algorithms to be compared. In this study we compare a simple representation comprised of an array of points to a more complex generative representation called the walking triangle representation.


representation point packing operators generative representations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashlock, D., Krisk, N., Fogel, G.: Functions for the analysis of exploration and exploitation. In: Proceedings of the 2013 Congress on Evolutionary Computation, pp. 2020–2027. IEEE Press, Piscataway (2013)CrossRefGoogle Scholar
  2. 2.
    Ashlock, W., Ashlock, D.: Single parent genetic programming. In: Proceedings of the 2005 Congress on Evolutionary Computation, pp. 1172–1179 (2005)Google Scholar
  3. 3.
    Bryden, K.M., Ashlock, D.A., Corns, S., Willson, S.J.: Graph based evolutionary algorithms. IEEE Transactions on Evolutionary Computation 10, 550–567 (2006)CrossRefGoogle Scholar
  4. 4.
    Caflisch, R.E.: Monte carlo and quasi-monte carlo methods. Acta Numerica 7, 1–49 (1998)Google Scholar
  5. 5.
    León, C., Miranda, G., Rodríguez, C., Segura, C.: 2D cutting stock problem: A new parallel algorithm and bounds. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 795–804. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Locatelli, M., Raber, U.: Packing equal circles in a square: A deterministic global optimization approach. Discrete Appl. Math. 122(1-3), 139–166 (2002), doi:10.1016/S0166-218X(01)00359-6CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Markot, M.C., Csendes, T.: A new verified optimization technique for the ‘packing circles in a unit square; problems. SIAM J. Optimization 16(1), 193–219 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    McEachern, A., Ashlock, D., Shonfeld, J.: Sequence classification with side effect machines evolved via ring optimization. Biosystems 113(1), 9–27 (2013)CrossRefGoogle Scholar
  9. 9.
    Smith, R.E., Forrest, S., Perelson, A.S.: Searching for diverse, cooperative populations with genetic algorithms. Evolutionary Computation 1(2), 127–149 (1993)CrossRefGoogle Scholar
  10. 10.
    Syswerda, G.: A study of reproduction in generational and steady state genetic algorithms. In: Foundations of Genetic Algorithms, pp. 94–101. Morgan Kaufmann, San Francisco (1991)Google Scholar
  11. 11.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, New York (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniel Ashlock
    • 1
  • Philip Hingston
    • 2
  • Cameron McGuinness
    • 1
  1. 1.University of GuelphCanada
  2. 2.Edith Cowan UniversityAustralia

Personalised recommendations