Deontic Logic for Human Reasoning

  • Ulrich Furbach
  • Claudia Schon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9060)


Deontic logic is shown to be applicable for modelling human reasoning. For this the Wason selection task and the suppression task are discussed in detail. Different versions of modelling norms with deontic logic are introduced and in the case of the Wason selection task it is demonstrated how differences in the performance of humans in the abstract and in the social contract case can be explained. Furthermore, it is shown that an automated theorem prover can be used as a reasoning tool for deontic logic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artosi, A., Cattabriga, P., Governatori, G.: Ked: A deontic theorem prover. In: On Legal Application of Logic Programming, ICLP 1994, pp. 60–76 (1994)Google Scholar
  2. 2.
    Bassiliades, N., Kontopoulos, E., Governatori, G., Antoniou, G.: A modal defeasible reasoner of deontic logic for the semantic web. Int. J. Semant. Web Inf. Syst. 7(1), 18–43 (2011)Google Scholar
  3. 3.
    Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 492–507. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bender, M., Pelzer, B., Schon, C.: System description: E-kRHyper 1.4. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 126–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier Science (December 2006)Google Scholar
  6. 6.
    Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for engineering ethically correct robots. IEEE Intelligent Systems 21(4), 38–44 (2006)CrossRefGoogle Scholar
  7. 7.
    Byrne, R.M.: Suppressing valid inferences with conditionals. Cognition 31(1), 61–83 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chisolm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 23, 33–36 (1963)CrossRefGoogle Scholar
  9. 9.
    Cosmides, L., Tooby, J.: Can a general deontic logic capture the facts of human moral reasoning? how the mind interprets social exchange rules and detects cheaters. Moral Psychology 1, 53–120 (2008)Google Scholar
  10. 10.
    Edgington, D.: Conditionals. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2008 edn. (2008)Google Scholar
  11. 11.
    Furbach, U., Schon, C., Stolzenberg, F.: Automated reasoning in deontic logic. In: Proceedings of the KIK 2014 Workshop. CEUR Workshop Proceedings (2014)Google Scholar
  12. 12.
    Hölldobler, S., Philipp, T., Wernhard, C.: An abductive model for human reasoning. In: AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning (2011)Google Scholar
  13. 13.
    Hölldobler, S., Kencana Ramli, C.D.P.: Logic programs under three-valued Łukasiewicz semantics. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 464–478. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Johnson-Laird, P.N., Byrne, R.M.: Conditionals: a theory of meaning, pragmatics, and inference. Psychological Review 109(4), 646 (2002)CrossRefGoogle Scholar
  15. 15.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 719–770 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kowalski, R.: Computational logic and human thinking: how to be artificially intelligent. Cambridge University Press (2011)Google Scholar
  17. 17.
    Motik, B., Shearer, R., Horrocks, I.: Optimized Reasoning in Description Logics Using Hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 67–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Sanford, D.: If P, then Q: Conditionals and the Foundations of Reasoning. Routledge (1989)Google Scholar
  19. 19.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proc. of IJCAI-91, pp. 466–471 (1991)Google Scholar
  20. 20.
    Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 345–391. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Stenning, K., Van Lambalgen, M.: Human reasoning and cognitive science. MIT Press (2008)Google Scholar
  22. 22.
    Stone, V.E., Cosmides, L., Tooby, J., Kroll, N., Knight, R.T.: Selective impairment of reasoning about social exchange in a patient with bilateral limbic system damage. Proceedings of the National Academy of Sciences 99(17), 11531–11536 (2002)CrossRefGoogle Scholar
  23. 23.
    von Kutschera, F.: Einführung in die Logik der Normen, Werte und Entscheidungen. In: Alber (1973)Google Scholar
  24. 24.
    Wason, P.C.: Reasoning about a rule. The Quarterly Journal of Experimental Psychology 20(3), 273–281 (1968)CrossRefGoogle Scholar
  25. 25.
    Pelzer, B., Wernhard, C.: System description: E- kRHyper. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 508–513. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ulrich Furbach
    • 1
  • Claudia Schon
    • 1
  1. 1.Universität Koblenz-LandauGermany

Personalised recommendations