Ontology-Enabled Access Control and Privacy Recommendations

  • Marcel HeupelEmail author
  • Lars Fischer
  • Mohamed Bourimi
  • Simon Scerri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8940)


Recent trends in ubiquitous computing target to provide user-controlled servers, providing a single point of access for managing different personal data in different Online Social Networks (OSNs), i.e. profile data and resources from various social interaction services (e.g., LinkedIn, Facebook, etc.). Ideally, personal data should remain independent of the environment, e.g., in order to support flexible migration to new landscapes. Such information interoperability can be achieved by ontology-based information representation and management. In this paper we present achievements and experiences of the project, with respect to access control and privacy preservation in such systems. Special focus is put on privacy issues related to linkability and unwanted information disclosure. These issues could arise for instance when collecting and integrating information of different social contacts and their live streams (e.g., activity status, live posts, etc.). Our approach provides privacy recommendations by leveraging (1) the detection of semantic equivalence between contacts as portrayed in online profiles and (2) NLP techniques for analysing shared live streams. The final results after 3 years are presented and the portability to other environments is shortly discussed.


Personal Information Management Decentralised social networking Access control Privacy recommendations Pervasive computing Linkability 


  1. 1.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of the 30th IEEE Symposium on Security and Privacy (S&P 2009), pp. 173–187. IEEE Computer Society, Oakland, 17–20 May 2009Google Scholar
  2. 2.
    Bourimi, M., Heupel, M., Westermann, B., Kesdogan, D., Planaguma, M., Gimenez, R., Karatas, F., Schwarte, P.: Towards transparent anonymity for user-controlled servers supporting collaborative scenarios. In: Ninth International Conference on Information Technology: New Generations (ITNG), pp. 102–108, April 2012Google Scholar
  3. 3.
    Scerri, S., Gimenez, R., Herman, F., Bourimi, M., Thiel, S.: - towards an integrated personal information sphere. In: Federated Social Web 2011 (2011)Google Scholar
  4. 4.
    Bourimi, M., Scerri, S., Planaguma, M.: A two-level approach to ontology-based access control in pervasive personal servers. Research report (2011)Google Scholar
  5. 5.
    Heupel, M., Fischer, L., Bourimi, M., Kesdoǧan, D., Scerri, S., Hermann, F., Gimenez, R.: Context-aware, trust-based access control for the userware. In: 5th International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–6 (2012)Google Scholar
  6. 6.
    Heupel, M., Bourimi, M., Kesdoğan, D.: Trust and privacy in the userware. In: Kurosu, M. (ed.) HCII/HCI 2013, Part III. LNCS, vol. 8006, pp. 39–48. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Heupel, M., Bourimi, M., Kesdogan, D.: The trust approach for supporting collaborative scenarios. In: 1st Workshop on Security in highly connected IT systems (DEXA 2014 workshops), pp. 1–5. IEEE CSP, June 2014Google Scholar
  8. 8.
    Thiel, S., Bourimi, M., Giménez, R., Scerri, S., Schuller, A., Valla, M., Wrobel, S., Frà, C., Herman, F.: A requirements-driven approach towards decentralized social networks. In: Proceedings of the International Workshop on Social Computing, Network, and Services (2012)Google Scholar
  9. 9.
    Karatas, F., Bourimi, M., Barth, T., Kesdogan, D., Gimenez, R., Schwittek, W., Planaguma, M.: Towards secure and at-runtime tailorable customer-driven public cloud deployment. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 124–130, March 2012Google Scholar
  10. 10.
    Krontiris, I., Freiling, F.: Integrating people-centric sensing with social networks: a privacy research agenda. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 620–623, 29 March–2 April 2010Google Scholar
  11. 11.
    Sacco, O., Passant, A.: A privacy preference ontology (PPO) for linked data. In: Linked Data on the Web Workshop at 20th International World Wide Web Conference. ACM Press (2011)Google Scholar
  12. 12.
    Ray, S.R.: Interoperability standards in the semantic web. J. Comput. Inf. Sci. Eng. ASME 2, 65–69 (2002)CrossRefGoogle Scholar
  13. 13.
    Cortis, K., Scerri, S., Rivera, I., Handschuh, S.: An ontology-based technique for online profile resolution. In: Jatowt, A., Lim, E.-P., Ding, Y., Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B.T. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 284–298. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Monge, A., Elkan, C.: The field matching problem: algorithms and applications. In: Proceedings of Second International Conference on Knowledge Discovery and Data Mining, pp. 267–270 (1996)Google Scholar
  15. 15.
    Scerri, S., Cortis, K., Rivera, I., Handschuh, S.: Knowledge discovery in distributed social web sharing activities. In: Proceedings of the 2nd Workshop on Making Sense of Microposts (MSM2012), WWW 2012 (2012)Google Scholar
  16. 16.
    Palen, L., Dourish, P.: Unpacking “privacy” for a networked world. In: CHI ’03: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 129–136. ACM Press, New York (2003)Google Scholar
  17. 17.
    Bourimi, M., Ossowski, J., Abou-Tair, D.D., Berlik, S., Abu-Saymeh, D.: Towards usable client-centric privacy advisory for mobile collaborative applications based on BDDs. In: 4th International Confercence on New Technologies, Mobility and Security (NTMS) Conference, pp. 1–6 (2011)Google Scholar
  18. 18.
    Kleek, M.V., Smith, D.A., Shadbolt, N., Schraefel, M.C.: A decentralized architecture for consolidating personal information ecosystems: the webbox. In: PIM 2012, January 2012. Event Dates: 11 Feb 2012Google Scholar
  19. 19.
    King, I., Lyu, M.R., Ma, H.: Introduction to social recommendation. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 1355–1356. ACM, New York (2010)Google Scholar
  20. 20.
    Shen, E., Lieberman, H., Lam, F.: What am i gonna wear? Scenario-oriented recommendation. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, IUI ’07, pp. 365–368. ACM, New York (2007)Google Scholar
  21. 21.
    Wartena, C., Slakhorst, W., Wibbels, M.: Selecting keywords for content based recommendation. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 1533–1536. ACM, New York (2010)Google Scholar
  22. 22.
    Papangelis, A., Galatas, G., Makedon, F.: A recommender system for assistive environments. In: Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’11, pp. 6:1–6:4. ACM, New York (2011)Google Scholar
  23. 23.
    Celino, I., Dell’Aglio, D., Valle, E.D., Huang, Y., Lee, T., Park, S., Tresp, V.: Making sense of location based micro-posts using stream reasoning. In: Proceedings of the 1st Workshop on Making Sense of Microposts (#MSM2011) at ESWC, pp. 13–18 (2011)Google Scholar
  24. 24.
    Steiner, T., Brousseau, A., Troncy, R.: A tweet consumers’ look at twitter trends. In: Proceedings of the 1st Workshop on Making Sense of Microposts (#MSM2011) at ESWC (2011)Google Scholar
  25. 25.
    Cano, A.E., Tucker, S., Ciravegna, F.: Capturing entity-based semantics emerging from personal awareness streams. In: Proceedings of the 1st Workshop on Making Sense of Microposts (#MSM2011) at ESWC, pp. 33–44 (2011)Google Scholar
  26. 26.
    Choudhury, S., Breslin, J.: Extracting semantic entities and events from sports tweets. In: Proceedings of the 1st Workshop on Making Sense of Microposts (#MSM2011) at ESWC, pp. 22–32 (2011)Google Scholar
  27. 27.
    Chang, J., Sun, E.: Location: How users share and respond to location-based data on social networking sites. In: Proceedings of the AAAI Conference on Weblogs and Social Media, pp. 74–80 (2011)Google Scholar
  28. 28.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on twitter for personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Zoltan, K., Johann, S.: Semantic analysis of microposts for efficient people to people interactions. In: Proceedings of the 10th Roedunet International Conference (RoEduNet), pp. 1–4 (2011)Google Scholar
  30. 30.
    Passant, A., Bojars, U., Breslin, J., Hastrup, T., Stankovic, M., Laublet, P.: An overview of smob 2: open, semantic and distributed microblogging, pp. 303–306 (2010)Google Scholar
  31. 31.
    Liu, X., Zhang, S., Wei, F., Zhou, M.: Recognizing named entities in tweets. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, HLT ’11, vol. 1, pp. 359–367. Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
  32. 32.
    Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: an experimental study. In: EMNLP (2011)Google Scholar
  33. 33.
    Scerri, S., Debattista, J., Attard, J., Rivera, I.: A semantic infrastructure for personalisable context-aware environments. AI Mag. Forthcoming 35 (2014)Google Scholar
  34. 34.
    Scerri, S., Rivera, I., Debattista, J., Thiel, S., Cortis, K., Attard, J., Knecht, C., Schuller, A., Hermann, F.: A context-aware information system (demo). In: Proceedings of the 11th European Semantic Web Conference on The Semantic Web: Research and Applications, ESWC’14 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marcel Heupel
    • 1
    Email author
  • Lars Fischer
    • 2
  • Mohamed Bourimi
    • 3
  • Simon Scerri
    • 4
  1. 1.Department Business Information Systems IVUniversity of RegensburgRegensburgGermany
  2. 2.Research Group IT Security ManagementUniversity of SiegenSiegenGermany
  3. 3.MT AGRatingenGermany
  4. 4.Organized Knowledge GroupFraunhofer IAISBonnGermany

Personalised recommendations