Safety and Deferred Update in Transactional Memory

  • Hagit Attiya
  • Sandeep Hans
  • Petr Kuznetsov
  • Srivatsan Ravi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8913)


Transactional memory allows the user to declare sequences of instructions as speculative transactions that can either commit or abort, providing all-or-nothing semantics. If a transaction commits, it should appear to execute sequentially, so that the committed transactions constitute a correct sequential execution. If a transaction aborts, none of its instructions should affect other transactions. These semantics allow the programmer to incorporate sequential code within transactions and let the transactional memory care about conflicts between concurrent transactions. In this sense, it is important that the memory is safe, i.e., every transaction has a consistent view even if the transaction aborts later. Otherwise, inconsistencies not predicted by the sequential program may cause a fatal irrecoverable error or an infinite loop. Furthermore, in a general setting, where a transaction may be explicitly aborted by the user or an external contention manager, a transaction should not be allowed to read from a not yet committed transaction, which is often called deferred-update semantics. This chapter overviews the scope of consistency criteria proposed so far to capture deferred-update semantics, and shows that—under reasonable conditions—the semantics induces a safety property.


Safety Property Read Operation Transactional Memory Opaque History Serial Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–185 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in transactional memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 376–390. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transactional memory. In: ICDCS, pp. 601–610 (2013)Google Scholar
  4. 4.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics, 2nd edn. Wiley Interscience (2004)Google Scholar
  5. 5.
    Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool (2010)Google Scholar
  8. 8.
    Guerraoui, R., Ruppert, E.: Linearizability is not always a safety property. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8539, pp. 57–69. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Hadzilacos, V.: A theory of reliability in database systems. J. ACM 35(1), 121–145 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)CrossRefGoogle Scholar
  11. 11.
    Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  12. 12.
    Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a versatile protocol with invisible read operations). Theor. Comput. Sci. 444 (July 2012)Google Scholar
  13. 13.
    König, D.: Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe. Akad. Verlag (1936)Google Scholar
  14. 14.
    Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. CoRR, abs/1103.1302 (2011)Google Scholar
  15. 15.
    Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: WTTM (2012)Google Scholar
  16. 16.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)Google Scholar
  17. 17.
    Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans. Program. Lang. Syst. 4(3), 455–495 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26, 631–653 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204–213 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hagit Attiya
    • 1
  • Sandeep Hans
    • 1
  • Petr Kuznetsov
    • 2
  • Srivatsan Ravi
    • 3
  1. 1.TechnionIsrael
  2. 2.Télécom ParisTechFrance
  3. 3.TU BerlinGermany

Personalised recommendations