Novel Concise Representations of High Utility Itemsets Using Generator Patterns

  • Philippe Fournier-Viger
  • Cheng-Wei Wu
  • Vincent S. Tseng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8933)


Mining High Utility Itemsets (HUIs) is an important task with many applications. However, the set of HUIs can be very large, which makes HUI mining algorithms suffer from long execution times and huge memory consumption. To address this issue, concise representations of HUIs have been proposed. However, no concise representation of HUIs has been proposed based on the concept of generator despite that it provides several benefits in many applications. In this paper, we incorporate the concept of generator into HUI mining and devise two new concise representations of HUIs, called High Utility Generators (HUGs) and Generator of High Utility Itemsets (GHUIs). Two efficient algorithms named HUG-Miner and GHUI-Miner are proposed to respectively mine these representations. Experiments on both real and synthetic datasets show that proposed algorithms are very efficient and that these representations are up to 36 times smaller than the set of all HUIs.


pattern mining high utility itemset mining concise representation high utility generator generator of high utility itemsets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. Int. Conf. Very Large Databases, pp. 487–499 (1994)Google Scholar
  2. 2.
    Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient Tree Structures for high utility Pattern Mining in Incremental Databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721 (2009)CrossRefGoogle Scholar
  3. 3.
    Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 40–52. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V.S.: VMSP: Efficient Vertical Mining of Maximal Sequential Patterns. In: Sokolova, M., van Beek, P. (eds.) Canadian AI. LNCS, vol. 8436, pp. 83–94. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Gao, C., Wang, J., He, Y., Zhou, L.: Efficient mining of frequent sequence generators. In: Proc. 17th Intern. Conf. World Wide Web, pp. 1051–1052 (2008)Google Scholar
  6. 6.
    Liu, M., Qu, J.: Mining High Utility Itemsets without Candidate Generation. In: Proceedings of CIKM 2012, pp. 55–64 (2012)Google Scholar
  7. 7.
    Liu, Y., Liao, W.-k., Choudhary, A.K.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Pham, T.-T., Luo, J., Hong, T.-P., Vo, B.: MSGPs: A novel algorithm for mining sequential generator patterns. In: Nguyen, N.-T., Hoang, K., Jȩdrzejowicz, P. (eds.) ICCCI 2012, Part II. LNCS, vol. 7654, pp. 393–401. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Shie, B.-E., Yu, P.S., Tseng, V.S.: Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Syst. Appl. 39(17), 12947–12960 (2012)CrossRefGoogle Scholar
  10. 10.
    Soulet, A., Rioult, F.: Efficiently depth-first minimal pattern mining. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 28–39. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Efficient vertical mining of frequent closures and generators. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 393–404. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Szathmary, L., et al.: A fast compound algorithm for mining generators, closed patterns, and computing links between equivalence classes. Ann. Math. Artif. Intell. 70(1-2), 81–105 (2014)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient Algorithms for Mining High Utility Itemsets from Transactional Databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)CrossRefGoogle Scholar
  14. 14.
    Wu, C.-W., Fournier-Viger, P., Yu., P.S., Tseng, V.S.: Efficient Mining of a Concise and Lossless Representation of High Utility Itemsets. In: Proceedings of ICDM 2011, pp. 824–833 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philippe Fournier-Viger
    • 1
  • Cheng-Wei Wu
    • 2
  • Vincent S. Tseng
    • 2
  1. 1.Dept. of Computer ScienceUniversity of MonctonCanada
  2. 2.Dept. of Comp. Sci. and Info. Eng.National Cheng Kung UniversityTaiwan

Personalised recommendations