Channel Modeling for Wireless Body Area Networks

  • David B. SmithEmail author
  • Leif W. Hanlen
Part of the Integrated Circuits and Systems book series (ICIR)


Wireless body area networks (BANs) are the latest generation of personal area networks (PANs) and describe radio networks of sensors, and/or actuators, placed in, on, around and some-times near the human body. BANs are motivated by the health-care application domain where reliable, long-term, operation is paramount. Hence understanding, and modeling, the body-area radio propagation channel is vital. In this chapter we describe channel models for wireless body area networks, in terms of operating scenarios—including on the human body, off the body, in the body, and body-to-body (or interfering); carrier frequencies from hundreds of MHz to several GHz; and bandwidth of operation, including narrowband and ultra-wideband. We describe particular challenges for accurate channel modeling such as the absence of wide-sense-stationarity in typical on-body narrowband BANs. We describe results following from a large amount of empirical data, and demonstrate that the BAN channel is dominated by shadowing with slowly-changing dynamics. Finally two particularly challenging scenarios for BAN operation are described: sleep-monitoring and also where there is a large number of co-located BANs.


Channel modeling Radio propagation Wireless body area networks 


  1. 1.
    A. Abdi, M. Kaveh, On the utility of gamma pdf in modeling shadow fading (slow fading), in IEEE 49th Vehicular Technology Conference, vol. 3 (1999), pp. 2308–2312 doi:10.1109/VETEC.1999.778479Google Scholar
  2. 2.
    H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Alomainy, Y. Hao, Radio channel models for UWB body-centric networks with compact planar antenna, in IEEE Antennas and Propagation Society International Symposium (IEEE, Albuerquerque, NM, 2006), pp. 2173–2176Google Scholar
  4. 4.
    A. Alomainy, Y. Hao, Modeling and characterization of biotelemetric radio channel from ingested implants considering organ contents. IEEE Trans. Antennas Propag. 57(4), 999–1005 (2009). doi:10.1109/TAP.2009.2014531CrossRefGoogle Scholar
  5. 5.
    A. Alomainy, Y. Hao, Y. Yuan, Y. Liu, Modelling and characterisation of radio propagation from wireless implants at different frequencies, in The 9th European Conference on Wireless Technology, Manchester, 2006, pp. 119–122. doi:10.1109/ECWT.2006.280449Google Scholar
  6. 6.
    V. Chaganti, L. Hanlen, D. Smith, Are narrowband wireless on-body networks wide-sense stationary? IEEE Trans. Wirel. Commun. 13(5), 2432–2442 (2014). doi:10.1109/TWC.2014.031914.130303CrossRefGoogle Scholar
  7. 7.
    X. Chen, X. Lu, D. Jin, L. Su, L. Zeng, Channel modeling of UWB-based wireless body area networks, in IEEE International Conference on Communications (ICC), Kyoto, 2011, pp. 1–5. doi:10.1109/icc.2011.5962687Google Scholar
  8. 8.
    S.L. Cotton, W.G. Scanlon, A statistical analysis of indoor multipath fading for a narrowband wireless body area network, in IEEE Personal, Indoor and Mobile Radio Communications Symposium, PIMRC 2006, Helsinki, 2006, pp. 1–5Google Scholar
  9. 9.
    S.L. Cotton, W.G. Scanlon, Higher-order statistics for the κ-μ distribution. Electron. Lett. 43(22), 1215–1217 (2007)CrossRefGoogle Scholar
  10. 10.
    S.L. Cotton, R. D’Errico, C. Oestges, A review of radio channel models for body centric communications. Radio Sci. 49(6), 371–388 (2014)CrossRefGoogle Scholar
  11. 11.
    R. D’Errico, L. Ouvry, Delay dispersion of the on-body dynamic channel, in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona, 2010, pp. 1–5Google Scholar
  12. 12.
    R. D’Errico, L. Ouvry, A statistical model for on-body dynamic channels. Int. J. Wirel. Inf. Netw. 17, 92–104 (2010)CrossRefGoogle Scholar
  13. 13.
    Federal Communications Commission (FCC) Guidelines. (1997) [Online]
  14. 14.
    A. Fort, Body area communications: channel characterization and ultra-wideband system-level approach for low power, Ph.D thesis, Vrije Universiteit Brussel, Brussels, 2007Google Scholar
  15. 15.
    A. Fort, C. Desset, P. De Doncker, P. Wambacq, L. Van Biesen, An ultra-wideband body area propagation channel model—from statistics to implementation. IEEE Trans. Microw. Theory Tech. 54(4), 1820–1826 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Fort, J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, L. Van Biesen, Ultra-wideband channel model for communication around the human body. IEEE J. Sel. Areas Commun. 24(4), 927–933 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Fort, C. Desset, P. Wambacq, L. Biesen, Indoor body-area channel model for narrowband communications. IET Microw. Antennas Propag. 1(6), 1197–1203 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Hanlen, D. Miniutti, D. Smith, A. Zhang, D. Rodda, B. Gilbert, A. Boulis, Network-to-network interference measurements ID: 802.15-09-0520-01-0006. IEEE Submission (2009)Google Scholar
  19. 19.
    L.W. Hanlen, V.G. Chaganti, B. Gilbert, D. Rodda, T. Lamahewa, D.B. Smith, Open-source testbed for body area networks: 200 sample/sec, 12 hrs continuous measurement, in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, 2010, pp. 66–71Google Scholar
  20. 20.
    L.W. Hanlen, D. Miniutti, D.B. Smith, D. Rodda, B. Gilbert, Co-Channel interference in body area networks with indoor measurements at 2.4 GHz: distance-to-interferer is a poor estimate of received interference power. Int. J. Wirel. Inf. Netw. 17, 113–125 (2010)Google Scholar
  21. 21.
    R.V.L. Hartley, Transmission of information. Bell Syst. Tech. J. 7(3), 535–563 (1928)CrossRefGoogle Scholar
  22. 22.
    Z.H. Hu, Y. Nechayev, P. Hall, Measurements and statistical analysis of the transmission channel between two wireless body area networks at 2.45 GHz and 5.8 GHz, in ICECom, 2010 Conference Proceedings (IEEE, 2010), pp. 1–4Google Scholar
  23. 23.
    IEEE standard for local and metropolitan area networks part 15.6: wireless body area networks. IEEE Std 802156-2012 (2012), pp. 1–271. doi:10.1109/IEEESTD.2012.6161600Google Scholar
  24. 24.
    M. Kim, J.I. Takada, Statistical model for 4.5-GHz narrowband on-body propagation channel with specific actions. IEEE Antennas Wirel. Propag. Lett. 8, 1250–1254 (2009). doi:10.1109/LAWP.2009.2036570Google Scholar
  25. 25.
    D. Lewis, 802.15.6 call for applications - response summary ID: 802.15-08-0407-05. IEEE Submission (2008)Google Scholar
  26. 26.
    H. Luecken, T. Zasowski, C. Steiner, F. Troesch, A. Wittneben, Location-aware adaptation and precoding for low complexity IR-UWB receivers, in IEEE International Conference on Ultra-Wideband, 2008. ICUWB 2008, vol. 3, Hannover, 2008, pp. 31–34. doi:10.1109/ICUWB.2008.4653409Google Scholar
  27. 27.
    T. Mimaki, H. Sato, M. Tanabe, A study on the multi-peak properties of the level-crossing intervals of a random process. Signal Process. 7(3), 251–265 (1984)CrossRefGoogle Scholar
  28. 28.
    D. Miniutti, L.W. Hanlen, D.B. Smith, J.A. Zhang, D. Lewis, D. Rodda, B. Gilbert, Narrowband channel characterization for body area networks ID: 802.15.08.0421. IEEE Submission (2008)Google Scholar
  29. 29.
    A.F. Molisch, D. Cassioli, C.C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, A comprehensive standardized model for ultrawideband propagation channels. IEEE Trans. Antennas Propag. 54(11), 3151–3166 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Rice, Distribution of the duration of fades in radio transmission: Gaussian noise model. Bell Syst. Tech. J. 37(3), 581–635 (1958)MathSciNetCrossRefGoogle Scholar
  31. 31.
    C. Roblin, J.M. Laheurte, R. D’Errico, A. Gati, D. Lautru, T. Alvès, H. Terchoune, F. Bouttout, Antenna design and channel modeling in the BAN context part i: antennas. Ann. Telecommun. 66, 139–155 (2011)CrossRefGoogle Scholar
  32. 32.
    K. Sayrafian-Pour, W.B. Yang, J. Hagedorn, J. Terrill, K.Y. Yazdandoost, K. Hamaguchi, Channel models for medical implant communication. Int. J. Wirel. Inf. Netw. 17(3–4), 105–112 (2010)CrossRefGoogle Scholar
  33. 33.
    T.S. See, J. Hee, C. Ong, L. Ong, Z.N. Chen, Inter-body channel model for UWB communications, in Proceedings of the Third European Conference on Antennas and Propagation (EuCAP) 2009, Berlin, 2009, pp. 3519–3522Google Scholar
  34. 34.
    D.B. Smith, L.W. Hanlen, The body area network channel model: a new look at second-order statistics, in Proceedings of the Eighth European Conference on Antennas and Propagation (EuCAP), The Hague, 2014, pp. 4351–4354Google Scholar
  35. 35.
    D.B. Smith, L.W. Hanlen, D. Miniutti, J.A. Zhang, D. Rodda, B. Gilbert, Statistical characterization of the dynamic narrowband body area channel, in International symposium on applied sciences in biomedical and communication (ISABEL), Aalborg, 2008, pp. 1–5Google Scholar
  36. 36.
    D. Smith, D. Miniutti, L. Hanlen, A. Zhang, D. Lewis, D. Rodda, B. Gilbert, Power delay profiles for dynamic narrowband body area network channels id:15-09-0187-01-0006. IEEE Submission (2009)Google Scholar
  37. 37.
    D. Smith, J. Zhang, L. Hanlen, D. Miniutti, D. Rodda, B. Gilbert, Temporal correlation of dynamic on-body area radio channel. Electron. Lett. 45(24), 1212–1213 (2009). doi:10.1049/el.2009.2057CrossRefGoogle Scholar
  38. 38.
    D. Smith, D. Miniutti, L.W. Hanlen, D. Rodda, B. Gilbert, Dynamic narrowband body area communications: link-margin based performance analysis and second-order temporal statistics, in IEEE Wireless Communications and Networking Conference (WCNC), Sydney, 2010, pp. 1–6Google Scholar
  39. 39.
    D. Smith, L. Hanlen, J. Zhang, D. Miniutti, D. Rodda, B. Gilbert, First- and second-order statistical characterizations of the dynamic body area propagation channel of various bandwidths. Ann. Telecommun. 66, 187–203 (2011)CrossRefGoogle Scholar
  40. 40.
    D. Smith, T. Lamahewa, L. Hanlen, F. Miniutti, Simple prediction-based power control for the on-body area communications channel, in IEEE International Conference on Communications (ICC) (2011), pp. 1–5. doi:10.1109/icc.2011.5963355Google Scholar
  41. 41.
    D.B. Smith, L.W. Hanlen, T.A. Lamahewa, A new look at the body area network channel model, in Proceedings of the Fifth European Conference on Antennas and Propagation (EuCAP), Rome, 2011, pp. 2987–2991Google Scholar
  42. 42.
    D.B. Smith, D. Miniutti, L.W. Hanlen, Characterization of the body-area propagation channel for monitoring a subject sleeping. IEEE Trans. Antennas Propag. 59(11), 4388–4392 (2011). doi:10.1109/TAP.2011.2164209CrossRefGoogle Scholar
  43. 43.
    D. Smith, L. Hanlen, D. Rodda, B. Gilbert, J. Dong, V. Chaganti, Body Area Network Radio Channel Measurement Set (2012). [Online]
  44. 44.
    D. Smith, D. Miniutti, T. Lamahewa, L. Hanlen, Propagation models for body-area networks: a survey and new outlook. IEEE Antennas Propag. Mag. 55(5), 97–117 (2013). doi:10.1109/MAP.2013.6735479CrossRefGoogle Scholar
  45. 45.
    X.D. Yang, Q. Abbasi, A. Alomainy, Y. Hao, Spatial correlation analysis of on-body radio channels considering statistical significance. IEEE Antennas IEEE Antennas Wirel. Propag. Lett. 10, 780–783 (2011). doi:10.1109/LAWP.2011.2163378CrossRefGoogle Scholar
  46. 46.
    K. Yazdandoost, K. Sayrafian-Pour, TG6 channel model ID: 802.15-08-0780-12-0006. IEEE Submission (2010)Google Scholar
  47. 47.
    B. Zhen, M. Patel, S. Lee, E. Won, Body area network (BAN) technical requirements ID:15-08-0037-01-0006. IEEE Submission (2008)Google Scholar
  48. 48.
    B. Zhen, K. Takizawa, T. Aoyagi, R. Kohno, A body surface coordinator for implanted biosensor networks, in IEEE International Conference on Communications, ICC ’09, Dresden, 2009, pp. 1–5. doi:10.1109/ICC.2009.5198579Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NICTA, 7 London CircuitCanberraAustralia
  2. 2.Australian National University (ANU)CanberraAustralia
  3. 3.University of CanberraBruceAustralia

Personalised recommendations