The Three-Dimensional Evolution of Hyperspectral Imaging

  • Min H. KimEmail author


Hyperspectral imaging has become more accessible nowadays as an image-based acquisition tool for physically-meaningful measurements. This technology is now evolving from classical 2D imaging to 3D imaging, allowing us to measure physically-meaningful reflectance on 3D solid objects. This chapter provides a brief overview on the foundations of hyperspectral imaging and introduces advanced applications of hyperspectral 3D imaging. This chapter first surveys the fundamentals of optics and calibration processes of hyperspectral imaging and then studies two typical designs of hyperspectral imaging. In addition to this introduction, this chapter briefly looks over the state-of-the-art applications of hyperspectral 3D imaging to measure hyperspectral intrinsic properties of surfaces on 3D solid objects.


Hyperspectral Imaging Hyperspectral Data Photometric Stereo Spectral Power Distribution Hyperspectral Imaging System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.


  1. 1.
    Attas M, Cloutis E, Collins C, Goltz D, Majzels C, Mansfield JR, Mantsch HH. Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J Cult Herit. 2003;4(2):127–36.CrossRefGoogle Scholar
  2. 2.
    Barsky S, Petrou M. The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans Pattern Anal Mach Intell. 2003;25(10):1239–52.CrossRefGoogle Scholar
  3. 3.
    Basri R, Jacobs DW, Kemelmacher I. Photometric stereo with general, unknown lighting. Int J Comput Vis. 2007;72(3):239–57.CrossRefGoogle Scholar
  4. 4.
    Bernardini F, Rushmeier H. The 3D model acquisition pipeline. Comput Graph Forum. 2002;21(2):149.CrossRefGoogle Scholar
  5. 5.
    Brauers J, Schulte N, Aach T. Modeling and compensation of geometric distortions of multispectral cameras with optical bandpass filter wheels. In: 15th European signal processing conference, vol. 15; 2007. p. 1902–6.Google Scholar
  6. 6.
    Buchsbaum G. A spatial processor model for object colour perception. J Franklin Inst. 1980;310(1):1–26.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chandraker M, Agarwal S, Kriegman D. Shadowcuts: photometric stereo with shadows. In: IEEE conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07). Piscataway: IEEE, p. 1–8.Google Scholar
  8. 8.
    CIE. Colorimetry. CIE Pub. 15.2, Commission Internationale de l’Eclairage (CIE), Vienna; 1986.Google Scholar
  9. 9.
    Du H, Tong X, Cao X, Lin S. A prism-based system for multispectral video acquisition. In: Proceedings of the International Conference on Computer Vision (ICCV), Piscataway: IEEE, 2009. p. 175–82.Google Scholar
  10. 10.
    Farouk M, Rifai IE, Tayar SE, Shishiny HE, Hosny M, Rayes ME, Gomes J, Giordano F, Rushmeier HE, Bernardini F, Magerlein K. Scanning and processing 3D objects for web display. In: Proceedings of the international conference on 3D Digital Imaging and Modeling (3DIM); 2003. p. 310–7.Google Scholar
  11. 11.
    Habel R, Kudenov M, Wimmer M. Practical spectral photography. In: Computer graphics forum, vol. 31. Wiley-Blackwell: Hoboken, 2012. p. 449–58.Google Scholar
  12. 12.
    Hardeberg JY, Schmitt F, Brettel H. Multispectral color image capture using a liquid crystal tunable filter. Opt Eng. 2002;41(10):2532–48.CrossRefGoogle Scholar
  13. 13.
    Hernández C, Vogiatzis G, Cipolla R. Shadows in three-source photometric stereo. In: Computer vision-ECCV 2008. Springer; 2008. p. 290–303.Google Scholar
  14. 14.
    Holroyd M, Lawrence J, Zickler T. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans Graph (Proc SIGGRAPH 2010). Los Angeles, United States, 2010;29(3):1–12. Article no. 99.Google Scholar
  15. 15.
    Hoye G, Fridman A. Mixel camera—a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging. Opt Exp. 2013;21(9):11,057–77.Google Scholar
  16. 16.
    Hyper3D. An open-source project in 2012.
  17. 17.
    Kawakami R, Wright J, Tai YW, Matsushita Y, Ben-Ezra M, Ikeuchi K. High-resolution hyperspectral imaging via matrix factorization. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2011. p. 2329–36.Google Scholar
  18. 18.
    Kim MH, Harvey TA, Kittle DS, Rushmeier H, Dorsey J, Prum RO, Brady DJ. 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans Graph (Proc SIGGRAPH 2014). 2012;31(4):38:1–11.Google Scholar
  19. 19.
    Kim MH, Rushmeier H, ffrench J, Passeri I. Developing open-source software for art conservators. In: The international symposium on virtual reality, archaeology and intelligent cultural heritage, eurographics association. Brighton, England; 2012. p. 97–104.Google Scholar
  20. 20.
    Kim MH, Rushmeier H, ffrench J, Passeri I, Tidmarsh D. Hyper3D: 3D graphics software for examining cultural artifacts. ACM J Comput Cult Herit 2014;7(3):1:1–19.Google Scholar
  21. 21.
    Kittle D, Choi K, Wagadarikar A, Brady DJ. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl Opt 2010;49(36):6824–33.CrossRefGoogle Scholar
  22. 22.
    Lee H, Kim MH. Building a two-way hyperspectral imaging system with liquid crystal tunable filters. In: Springer LNCS 8509 (Proceedings of ICISP 2014). Normandy: Springer; 2014. p. 26–34.Google Scholar
  23. 23.
    Liao M, Huang X, Yang R. Interreflection removal for photometric stereo by using spectrum-dependent albedo. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR); 2011. p. 689–96.Google Scholar
  24. 24.
    Lucas Digital Ltd. OpenEXR. 2009.
  25. 25.
    Mansouri A, Lathuiliere A, Marzani FS, Voisin Y, Gouton P. Toward a 3d multispectral scanner: an application to multimedia. MultiMedia, IEEE. 2007;14(1):40–7.CrossRefGoogle Scholar
  26. 26.
    Mouroulis P, Green RO, Chrien TG. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl Opt. 2000;39(13):2210–20.CrossRefGoogle Scholar
  27. 27.
    Nam G, Kim MH. Multispectral photometric stereo for acquiring high-fidelity surface normals. IEEE Comput Graph Appl. 2014;34(6):57–68.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nayar SK, Ikeuchi K, Kanade T. Shape from interreflections. Int J Comput Vis (IJCV). 1991;6(3):173–95.CrossRefGoogle Scholar
  29. 29.
    Nielsen M, Stokes M. The creation of the sRGB ICC profile. In: Proceedings of the color imaging conference IS&T; 1998. p. 253–7.Google Scholar
  30. 30.
    Qin J. Hyperspectral imaging instruments. In: Sun DW, editor. Hyperspectral imaging for food quality analysis and control. Elsevier: Amsterdam, 2010. p. 129–75.CrossRefGoogle Scholar
  31. 31.
    Rapantzikos K, Balas C. Hyperspectral imaging: potential in non-destructive analysis of palimpsests. In: Proceedings of the International Conference on Image Processing (ICIP), vol. 2; 2005. p. 618–21.Google Scholar
  32. 32.
    Rapantzikos K, Balas C. Hyperspectral imaging: potential in non-destructive analysis of palimpsests. In: IEEE International Conference on Image Processing, 2005 (ICIP 2005), vol. 2. Piscataway: IEEE, 2005. p. II–618.Google Scholar
  33. 33.
    Sugiura H, Kuno T, Watanabe N, Matoba N, Hayashi J, Miyata Y. Development of a multispectral camera system. Proc SPIE. 2000;3965:331–9.CrossRefGoogle Scholar
  34. 34.
    Sun J, Smith M, Smith L, Midha S, Bamber J. Object surface recovery using a multi-light photometric stereo technique for non-lambertian surfaces subject to shadows and specularities. Image Vis Comput. 2007;25(7):1050–7.CrossRefGoogle Scholar
  35. 35.
    Takatani T, Matsushita Y, Lin S, Mukaigawa Y, Yagi Y. Enhanced photometric stereo with multispectral images. In: International conference on Machine Vision Applications (MVA). IAPR: Kyoto, 2013.Google Scholar
  36. 36.
    Verbiest F, Van Gool L. Photometric stereo with coherent outlier handling and confidence estimation. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR); 2008. p. 1–8.Google Scholar
  37. 37.
    Vogiatzis G, Hernández C. Self-calibrated, multi-spectral photometric stereo for 3d face capture. Int J Comput Vis (IJCV). 2012;97(1):91–103.CrossRefGoogle Scholar
  38. 38.
    Wagadarikar A, John R, Willett R, Brady DJ. Single disperser design for coded aperture snapshot spectral imaging. Appl Opt. 2008;47(10):B44–51.CrossRefGoogle Scholar
  39. 39.
    Wagadarikar AA, Pitsianis NP, Sun X, Brady DJ. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt Exp. 2009;17(8):6368–88.CrossRefGoogle Scholar
  40. 40.
    Ware G, Chabries D, Christiansen R, Brady J, Martin C. Multispectral analysis of ancient Maya pigments: implications for the Naj Tunich Corpus. In: Proceedings of the IEEE geoscience and remote sensing symposium, vol. 6; 2000. p. 2489–91.Google Scholar
  41. 41.
    Wu TP, Tang KL, Tang CK, Wong TT. Dense photometric stereo: a markov random field approach. IEEE Trans Pattern Anal Mach Intell. 2006;28(11):1830–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.KAIST, Computer Science DepartmentDaejeonKorea

Personalised recommendations