Advertisement

Energy Harvesting with Supercapacitor-Based Energy Storage

  • Sehwan Kim
  • Pai H. ChouEmail author

Abstract

Harvesting energy from the environment is a desirable and increasingly important capability in several emerging applications of smart sensing systems. Due to the low-power characteristics of many smart-sensor systems, their energy harvesting systems (EHS) can achieve high efficiency by emphasizing low overhead in maximum power point tracking (MPPT) and the use of supercapacitors as a promising type of energy storage elements (ESE). Considerations in designing efficient charging circuitry for supercapacitors include leakage, residual energy, topology, energy density, and charge redistribution. This chapter first reviews ambient energy sources and their energy transducers for harvesting, followed by descriptions harvesters with low-overhead efficient charging circuitry and supercapacitor-based storage.

Keywords

Residual Energy Energy Harvester Solar Panel Equivalent Circuit Model Charge Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahska R, Mamur H. A review: thermoelectric generators in renewable energy. Int J Renew Energ Res (IJRER). 2014;4:128–36.Google Scholar
  2. 2.
    Beeby S, Tudor M, White N. Energy harvesting vibration sources for microsystems applications. J Measure Sci Technol. 2006;17(12):175–96.CrossRefGoogle Scholar
  3. 3.
    Bierschenk J. Optimized thermoelectrics for energy harvesting applications. In: Proceedings of the 17th international symposium on the applications of ferroelectrics (ISAF), Santa Re, Feb 23–28, 2008. p. 1–4Google Scholar
  4. 4.
    Brunelli D, Moser C, Thiele L, Benini L. Design of a solar-harvesting circuit for batteryless embedded systems. IEEE Trans Circuits Syst. 2009;56:2519–28.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources. 2000;91:37–50.CrossRefGoogle Scholar
  6. 6.
    Chen CY, Chou PH. DuraCap: a supercapacitor-based, power-bootstrapping, maximum power point tracking energy-harvesting system. In: Proceedings of the international symposium on low power electronics and design (ISLPED). Austin: ACM; 2010. p. 313–8.Google Scholar
  7. 7.
    Chevalerias O, O’Donnell T, Power D, O’Donovan N, Duffy G, Grant G, O’Mathuna SC. Inductive telemetry of multiple sensor modules. IEEE Pervasive Comput. 2005;4(1):46–52.CrossRefGoogle Scholar
  8. 8.
    Chou PH, Kim S. Techniques for maximizing efficiency of solar energy harvesting systems. In: Proceedings of the fifth conference on mobile computing and ubiquitous networking (ICMU 2010), Seattle, WA, USA, 2010. p. 26–8.Google Scholar
  9. 9.
    Chou PH, Li D. Maximizing efficiency of solar-powered systems by load matching. In: Proceedings of the international symposium on low power electronics and design (ISLPED), August 9–11, 2004. p. 162–7.Google Scholar
  10. 10.
    Diab Y, Venet P, Gualous H, Rojat G. Electrical, frequency and thermal measurement and modelling of supercapacitor performance. In: The 3rd european symposium on supercapacitors and applications, Rome, Italy, November 6–7, 2008. p.1066–9Google Scholar
  11. 11.
    Dutta P, Hui J, Jeong J, Kim S, Sharp C, Taneja J, Tolle G, Whitehouse K, Culler D. Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments. In: The fifth international conference on information processing in sensor networks (IPSN/SPOTS), April 19–21, 2006. p. 407–15.Google Scholar
  12. 12.
    Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A. Characterization of thermoelectric modules for powering autonomous sensors. IEEE Trans Instrum Meas. 2009;58:99–107.CrossRefGoogle Scholar
  13. 13.
    Hohm D, Ropp M. Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed. In: Conference record of the Twenty-Eighth IEEE photovoltaic specialists conference, September 15–22, 2000. p. 1699–702.Google Scholar
  14. 14.
    Jiang X, Polastre J, Culler D. Perpetual environmentally powered sensor networks. In: Proceedings of fourth international symposium on information processing in sensor networks (ISPN), April 15, 2005. p. 463–8.Google Scholar
  15. 15.
    Kim R, Lai J, York B, Koran A. Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system. IEEE Trans Ind Electron. 2009;56: 3709–16.CrossRefGoogle Scholar
  16. 16.
    Kim S, Chou PH. Energy harvesting by sweeping voltage-escalated charging of a reconfigurable supercapacitor array. In: Proceedings of the international symposium on low power electronics and design (ISLPED). Fukuoka: ACM; 2011. p. 235–40.CrossRefGoogle Scholar
  17. 17.
    Kim S, Chou PH. Size and topology optimization for supercapacitor-based sub-watt energy harvesters. IEEE Trans Power Electron. 2013;28:2068–80.CrossRefGoogle Scholar
  18. 18.
    Kim S, Torbol M, Chou PH. Remote structural health monitoring systems for next generation scada. Smart Struct Syst. 2013;11:511–31.CrossRefGoogle Scholar
  19. 19.
    Kim Y, Chang N, Wang Y, Pedram M. Maximum power transfer tracking for a photovoltaic-supercapacitor energy system. In: Proceeding of the 16th ACM/IEEE international symposium on low power electronics and design ISLPED. New York: ACM; 2010. p. 307–12.CrossRefGoogle Scholar
  20. 20.
    KINETRON: The micro generating system for a watch. http://www.kinetron.eu/wp-content/uploads/2014/04/MGSWatch.pdf
  21. 21.
    Koutroulis E, Kalaitzakis K, Voulgaris, N. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans Power Electron. 2001;16:46–54.CrossRefGoogle Scholar
  22. 22.
    Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron. 2006;53(2):486–94.CrossRefGoogle Scholar
  23. 23.
    Kymissis J, Kendall C, Paradiso J, Gershenfeld N. Parasitic power harvesting in shoes. In: Proceedings of the 2nd IEEE international conference wearable computing, CA, USA, 1998. p. 132–39.Google Scholar
  24. 24.
    Kymissis J, Kendall C, Paradiso JA, Gershenfeld N. Parasitic power harvesting in shoes. In: Proceedings of the second IEEE international symposium on wearable computers (ISWC). Washington: IEEE Computer Society; 1998. p. 132–39.Google Scholar
  25. 25.
    Lee D, Noh H, Hyun D, Choy I. An improved MPPT converter using current compensation method for small scaled PV-applications. In: The 18th annual IEEE applied power electronics conference and exposition, vol. 1, 2003. p. 540–5.Google Scholar
  26. 26.
    Minami M, Morito T, Morikawa H, Aoyama T. Solar Biscuit: a battery-less wireless sensor network system for environmental monitoring applications. In: The 2nd international workshop on networked sensing systems, 2005.Google Scholar
  27. 27.
    Noguchi T, Togashi S, Nakamoto R. Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system. In: Proceedings of 2000 IEEE international symposium on industrial electronics. vol. 1, 2000. p. 157–62.Google Scholar
  28. 28.
    Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron. 2002;17:669–76.CrossRefGoogle Scholar
  29. 29.
    Park C, Chou PH. PUMA: Power utility maximization for multiple-supply systems by a load-matching switch. In: Proceedings of international symposium on low power electronic design (ISLPED), August 9–11, 2004. p. 168–73.Google Scholar
  30. 30.
    Park C, Chou PH. AmbiMax: Efficient, autonomous energy harvesting system for multiple-supply wireless sensor nodes. In: Proceedings of 3rd annual IEEE communications society conference on sensor, mesh, and ad hoc communications and networks (SECON), September 25–28, 2006. p. 168–77.Google Scholar
  31. 31.
    Park C, Chou PH. Eco: Ultra-wearable and expandable wireless sensor platform. In: Proceedings of the third international workshop on body sensor networks (BSN 2006). Washington: IEEE Computer Society/Boston: MIT Media Lab; 2006. p. 162–5Google Scholar
  32. 32.
    Park C, No K, Chou PH. TurboCap: Batteryless, supercapacitor-based power supply for Mini-FDPM. In: Proceedings of 3rd european symposium on supercapacitors and applications (ESSCAP), Rome, Italy, November 2008.Google Scholar
  33. 33.
    Petreus D, Moga D, Galatus R, Munteanu RA. Modeling and sizing of supercapacitors. Adv Electr Comput Eng. 2008;8(2):15–22.CrossRefGoogle Scholar
  34. 34.
    Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M. Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th international symposium on information processing in sensor networks (IPSN), April 25–27, 2005. p. 457–62.Google Scholar
  35. 35.
    Roundy S, Wright P. A piezoelectric vibration based generator for wireless electronics. J Smart Mater Struct. 2004;13(5):1131–42.CrossRefGoogle Scholar
  36. 36.
    Sera D, Teodorescu R, Rodriguez P. PV panel model based on datasheet values. In: IEEE international symposium on industrial electronics (ISIE), June 4–7, 2007. p. 2392–6.Google Scholar
  37. 37.
    Simjee F, Chou PH. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans Power Electron. 2008;23:1526–36.CrossRefGoogle Scholar
  38. 38.
    Williams C, Yates R. Analysis of a micro-electric generator for microsystems. In: Proceedings of eurosensors, 1995. p. 369–72.Google Scholar
  39. 39.
    Xiao W, Dunford W. A modified adaptive hill climbing MPPT method for photovoltaic power systems. In: 2004 35th annual IEEE power electronics specialists conference, vol. 3, June 20–25, 2004. p. 1957–63.Google Scholar
  40. 40.
    Yang H, Zhang Y. Analysis of supercapacitor energy loss for power management in environmentally powered wireless sensor nodes. IEEE Trans Power Electron. 2013;28(11): 5391–403.CrossRefGoogle Scholar
  41. 41.
    Zhu GR, Loo KH, Lai YM, Tse CK. Quasi-maximum efficiency point tracking for direct methanol fuel cell in DMFC/supercapacitor hybrid energy system. IEEE Trans Energy Convers. 2012;27(3):561–71.CrossRefGoogle Scholar
  42. 42.
    Zhu T, Zhong Z, Gu Y, He T, Zhang ZL. Leakage-aware energy synchronization for wireless sensor networks. In: The 8th annual international conference on mobile systems, applications, and services (MobiSys), June 15–18, 2010. p. 319–32.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dankook UniversityCheonan-siRepublic of Korea
  2. 2.University of CaliforniaIrvineUSA
  3. 3.National Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations