Robotic Manipulation Within the Underwater Mission Planning Context

A Use Case for Benchmarking
  • Javier Pérez
  • Jorge Sales
  • Antonio Peñalver
  • J. Javier Fernández
  • Pedro J. Sanz
  • Juan C. García
  • Jose V. Martí
  • Raul Marín
  • David Fornas
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 29)


Nowadays, there is an increasing demand for underwater intervention systems around the world in several application domains. The commercially available systems are far from what is demanded in many aspects, justifying the need of more autonomous, cheap and easy-to-use solutions for underwater intervention missions. The chapter begins making a review of the most important research projects that have been able to demonstrate some results in sea conditions. Then, the expertise and know-how developed in the context of our research group in the last years is presented. Maybe, one of the main achieved results, from the methodological point of view, is a three-layer general system architecture based on the Robot Operating System (ROS), which allows an underwater vehicle to perform intervention missions with a high degree of autonomy, independently of the targeted scenario. Moreover, the use of an underwater simulator as a 3D simulation tool for benchmarking and Human Robot Interaction (HRI) is also discussed. In summary, a methodology has been developed for experimental validation, independently of the specific underwater intervention problem to solve. It consists on the use of the simulator, as a prior step before moving to any of the testbeds used for experimental validation. The reliability and feasibility of this methodology has been demonstrated for intervention missions in sea trial conditions.


Underwater robot ROS Mission planning Grasping and manipulation planning 



This research was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project) and by Foundation Caixa Castelló-Bancaixa and Universitat Jaume I grant PI 1B2011-17.


  1. 1.
    Ahmadzadeh S, Kormushev P, Caldwell D (2013) Autonomous robotic valve turning: a hierarchical learning approach. In: 2013 IEEE international conference on robotics and automation (ICRA), pp 4629–4634. doi: 10.1109/ICRA.2013.6631235
  2. 2.
    Antonelli G (2014) Underwater robots. Springer tracts in advanced robotics, vol 96. Springer, HeidelbergGoogle Scholar
  3. 3.
    Bekey G, Liu H, Tomovic R, Karplus W (1993) Knowledge-based control of grasping in robot hands using heuristics from human motor skills. IEEE Trans Robot Autom 9(6):709–722. doi: 10.1109/70.265915 CrossRefGoogle Scholar
  4. 4.
    Bicchi A, Kumar V (2000) Robotic grasping and contact: a review. In: IEEE international conference on robotics and automation, ICRA’00, vol 1, pp 348–353. doi: 10.1109/ROBOT.2000.844081
  5. 5.
    Borst C, Fischer M, Haidacher S, Liu H, Hirzinger G (2003) DLR hand II: experiments and experience with an anthropomorphic hand. In: IEEE international conference on robotics and automation, ICRA’03, vol 1, pp 702–707. doi: 10.1109/ROBOT.2003.1241676
  6. 6.
    Carrera A, Ahmadzadeh SR, Ajoudani A, Kormushev P, Carreras M, Caldwell DG (2012) Towards autonomous robotic valve turning. J Cybern Inf Technol (CIT) 12(3):17–26Google Scholar
  7. 7.
    Casalino G, Zereik E, Simetti E, Torelli S, Sperinde A, Turetta A (2012) Agility for underwater floating manipulation: task & subsystem priority based control strategy. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1772–1779. doi: 10.1109/IROS.2012.6386127
  8. 8.
    Choi S, Takashige GY, Yuh J (1994) Experimental study on an underwater robotic vehicle: ODIN. In: Proceedings of 1994 symposium on autonomous underwater vehicle technology, AUV’94, pp 79–84. doi: 10.1109/AUV.1994.518610
  9. 9.
    Cipolla R, Hollinghurst N (1997) Visually guided grasping in unstructured environments. Robot Auton Syst 19(3–4):337–346. doi: 10.1016/S0921-8890(96)00060-7 CrossRefGoogle Scholar
  10. 10.
    Coelho J, Piater J, Grupen R (2001) Developing haptic and visual perceptual categories for reaching and grasping with a humanoid robot. Robot Auton Syst 37(2–3):195–218. doi: 10.1016/S0921-8890(01)00158-0
  11. 11.
    Dillmann R (2004) KA 1.10 Benchmarks for Robotics Research. Technical reportGoogle Scholar
  12. 12.
    Ekvall S, Kragic D (2004) Interactive grasp learning based on human demonstration. In: 2004 IEEE international conference on robotics and automation, ICRA’04, vol 4, pp 3519–3524. doi: 10.1109/ROBOT.2004.1308798
  13. 13.
    Evans J, Keller K, Smith J, Marty P, Rigaud O (2001) Docking techniques and evaluation trials of the SWIMMER AUV: an autonomous deployment. In: AUV for work-class ROVs. OCEANS, 2001, pp 520–528Google Scholar
  14. 14.
    Evans J, Redmond P, Plakas C, Hamilton K, Lane D (2003) Autonomous docking for Intervention-AUVs using sonar and video-based real-time 3D pose estimation. In: OCEANS, vol 4, pp 2201–2210. doi: 10.1109/OCEANS.2003.178243
  15. 15.
    Fernández J, Prats M, Sanz P, García J, Marín R, Robinson M, Ribas D, Ridao P (2013) Grasping for the seabed: developing a new underwater robot arm for shallow-water intervention. IEEE Robot Autom Mag 4(20):121–130. doi: 10.1109/MRA.2013.2248307 CrossRefGoogle Scholar
  16. 16.
    FP7-MORPH: Marine Robotic System of Self-Organizing, Logically Linked Physical Nodes (MORPH).
  17. 17.
    FP7-PANDORA: Persistent Autonomy through learNing, aDaptation, Observation and Re-plAnning (PANDORA).
  18. 18.
    Gilmour B, Niccum G, O’Donnell T (2012) Field resident AUV systems: Chevron’s long-term goal for AUV development. In: 2012 IEEE/OES autonomous underwater vehicles (AUV), pp 1–5. doi: 10.1109/AUV.2012.6380718
  19. 19.
    Hauck A, Ruttinger J, Sorg M, Farber G (1999) Visual determination of 3D grasping points on unknown objects with a binocular camera system. In: Proceedings of 1999 IEEE/RSJ international conference on intelligent robots and systems, IROS’99, vol 1, pp 272–278. doi: 10.1109/IROS.1999.813016
  20. 20.
    Kamon I, Flash T, Edelman S (1998) Learning visually guided grasping: a test case in sensorimotor learning. IEEE Trans Syst, Man Cybern Part A 28(3):266–276CrossRefGoogle Scholar
  21. 21.
    Lane D, Davies J, Casalino G, Bartolini G, Cannata G, Veruggio G, Canals M, Smith C, O’Brien D, Pickett M, Robinson G, Jones D, Scott E, Ferrara A, Angelleti D, Coccoli M, Bono R, Virgili P, Pallas R, Gracia E (1997) AMADEUS: advanced manipulation for deep underwater sampling. IEEE Robot Autom Mag 4(4):34–45. doi: 10.1109/100.637804 CrossRefGoogle Scholar
  22. 22.
    Liu H, Iberall T, Bekey G (1989) The multi-dimensional quality of task requirements for dextrous robot hand control. In: IEEE international conference on robotics and automation (ICRA’89), pp 452–457Google Scholar
  23. 23.
    Malis E (2004) Improving vision-based control using efficient second-order minimization techniques. In: 2004 IEEE international conference on robotics and automation, ICRA’04, vol 2, pp 1843–1848. doi: 10.1109/ROBOT.2004.1308092
  24. 24.
    Mallios A, Ridao P, Carreras M, Hernandez E (2011) Navigating and mapping with the SPARUS AUV in a natural and unstructured underwater environment. In: OCEANS 2011, Waikoloa, Kona, Hawai, Kona, pp 1–7Google Scholar
  25. 25.
    Marani G, Choi SK, Yuh J (2009) Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng 36(1):15–23. doi: 10.1016/j.oceaneng.2008.08.007 CrossRefGoogle Scholar
  26. 26.
    Marani G, Yuh J (2014) Introduction to autonomous manipulation—case study with an underwater robot, SAUVIM. Springer tracts in advanced robotics, vol 102. Springer, BerlinGoogle Scholar
  27. 27.
    Miller AT, Knoop S, Christensen HI, Allen PK (2003) Automatic grasp planning using shape primitives. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’03), Taipei, Taiwan, pp 1824–1829Google Scholar
  28. 28.
    Morales A, Asfour T, Azad P, Knoop S, Dillmann R (2006) Integrated grasp planning and visual object localization for a humanoid robot with five-fingered hands. In: IEEE/RSJ international conference on intelligent robots and systems, Beijing, China, pp 5663–5668Google Scholar
  29. 29.
    Morales A, Chinellato E, Fagg A, del Pobil A (2004) Experimental prediction of the performance of grasps tasks from visual features. Int J Humanoid Robot 10(1):671–691CrossRefGoogle Scholar
  30. 30.
    Morales A, Recatalá G, Sanz P, del Pobil A (2001) Heuristic vision-based computation of planar antipodal grasps on unknown objects. In: IEEE international conference on robotics and automation (ICRA), vol 1, pp 583–588. doi: 10.1109/ROBOT.2001.932613
  31. 31.
    Palomeras N, Ribas D, Vallicrosa G, Ridao P, Carreras M (2014) Autonomous I-AUV docking for fixed-base manipulation. In: 19th world congress of the international federation of automatic control (IFAC), pp 12160–12165. doi: 10.3182/20140824-6-ZA-1003.01878
  32. 32.
    Peñalver A, Pérez J, Fernández JJ, Sales J, Sanz PJ, García JC, Fornas D, Marín R (2014) Autonomous intervention on an underwater panel mockup by using visually-guided manipulation techniques. In: 19th world congress of the international federation of automatic control (IFAC), pp 5151–5156. doi: 10.3182/20140824-6-ZA-1003.02545
  33. 33.
    Prats M, Garcia J, Wirth S, Ribas D, Sanz P, Ridao P, Gracias N, Oliver G (2012) Multipurpose autonomous underwater intervention: a systems integration perspective. In: 2012 20th mediterranean conference on control automation (MED), pp 1379–1384. doi: 10.1109/MED.2012.6265831
  34. 34.
    Prats M, Pérez J, Fernández J, Sanz P (2012) An open source tool for simulation and supervision of underwater intervention missions. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2577–2582. doi: 10.1109/IROS.2012.6385788
  35. 35.
    Prats M, del Pobil AP, Sanz PJ (2013) Robot physical interaction through the combination of vision, tactile and force feedback. Applications to assistive robotics, Springer tracts in advanced robotics, vol 84. Springer, BerlinGoogle Scholar
  36. 36.
    Prats M, Ribas D, Palomeras N, García J, Nannen V, Wirth S, Fernández J, Beltrán J, Campos R, Ridao P, Sanz P, Oliver G, Carreras M, Gracias N, Marín R, Ortiz A (2012) Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intell Serv Robot 5(1):19–31. doi: 10.1007/s11370-011-0101-z CrossRefGoogle Scholar
  37. 37.
    Pérez J, Sales J, Prats M, Martí JV, Fornas D, Marín R, Sanz PJ (2013) The underwater simulator UWSim: benchmarking capabilities on autonomous grasping. In: 11th international conference on informatics in control, automation and robotics (ICINCO)Google Scholar
  38. 38.
    Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source softwareGoogle Scholar
  39. 39.
    Ribas D, Palomeras N, Ridao P, Carreras M (2012) Girona 500 AUV, from survey to intervention. IEEE/ASME Trans Mechatron (Focused Section on Marine Mechatronic Systems) 17(1):46–53Google Scholar
  40. 40.
    Rigaud V, Coste-Maniere E, Aldon M, Probert P, Perrier M, Rives P, Simon D, Lang D, Kiener J, Casal A, Amar J, Dauchez P, Chantler M (1998) Union: underwater intelligent operation and navigation. IEEE Robot Autom Mag 5(1):25–35. doi: 10.1109/100.667323 CrossRefGoogle Scholar
  41. 41.
    Rusu R, Holzbach A, Diankov R, Bradski G, Beetz M (2009) Perception for mobile manipulation and grasping using active stereo. In: 9th IEEE-RAS international conference on humanoid robots, humanoids 2009, pp 632–638. doi: 10.1109/ICHR.2009.5379597
  42. 42.
    Sales J, Santos L, Sanz PJ, Dias J, García JC (2013) Increasing the autonomy levels for underwater intervention missions by using learning and probabilistic techniques. In: First Iberian robotics conference (ROBOT 2013), Madrid, SpainGoogle Scholar
  43. 43.
    Sanz PJ, Marín R, Sales J, Oliver G, Ridao P (2012) Recent advances in underwater robotics for intervention missions. Soller harbor experiments, Low-cost booksGoogle Scholar
  44. 44.
    Sanz PJ, Marín R, Sánchez JS (2005) Including efficient object recognition capabilities in online robots: from a statistical to a neural-network classifier. IEEE Trans Syst, Man, Cybern Part C: Appl Rev 35(1):87–96. doi: 10.1109/TSMCC.2004.840055 CrossRefGoogle Scholar
  45. 45.
    Sanz PJ, Prats M, Ridao P, Ribas D, Oliver G, Orti A (2010) Recent progress in the RAUVI project a reconfigurable autonomous underwater vehicle for intervention. In: 52th international symposium ELMAR-2010. Zadar, Croatia, pp 471–474Google Scholar
  46. 46.
    Sanz PJ, Requena A, Iñesta JM, del Pobil AP (2005) Grasping the not-so-obvious: vision-based object handling for industrial applications. IEEE Robot Autom Mag 12(3):44–52. doi: 10.1109/MRA.2005.1511868 CrossRefGoogle Scholar
  47. 47.
    Sanz PJ, Ridao P, Oliver G, Casalino G, Petillot Y, Silvestre C, Melchiorri C, Turetta A (2013) TRIDENT: an European project targeted to increase the autonomy levels for underwater intervention missions. In: OCEANS’13 MTS/IEEE conference, San DiegoGoogle Scholar
  48. 48.
    Shimoga KB (1996) Robot grasp synthesis algorithms: a survey. Int J Robot Res 15(3):230–266. doi: 10.1177/027836499601500302 CrossRefGoogle Scholar
  49. 49.
    Simetti E, Casalino G, Torelli S, Sperinde A, Turetta A (2013) Experimental results on task priority and dynamic programming based approach to underwater floating manipulation. In: OCEANS—Bergen, 2013 MTS/IEEE, pp 1–7. doi: 10.1109/OCEANS-Bergen.6608016
  50. 50.
    Stansfield S (1991) Robotic grasping of unknown objects: a knowledge-based approach. Int J Robot Res 10(4):314–326. doi: 10.1177/027836499101000402 CrossRefGoogle Scholar
  51. 51.
    Wang H, Rock S, Lee M (1995) Experiments in automatic retrieval of underwater objects with an AUV. In: OCEANS’95. Proceedings of conference on MTS/IEEE. Challenges of our changing global environment, vol 1, pp 366–373. doi: 10.1109/OCEANS.1995.526796

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Javier Pérez
    • 1
  • Jorge Sales
    • 1
  • Antonio Peñalver
    • 1
  • J. Javier Fernández
    • 1
  • Pedro J. Sanz
    • 1
  • Juan C. García
    • 1
  • Jose V. Martí
    • 1
  • Raul Marín
    • 1
  • David Fornas
    • 1
  1. 1.IRS LabJaume I UniversityCastellonSpain

Personalised recommendations