Automatic Perfusion Analysis Using Phase-Based Registration and Object-Based Image Analysis

  • Lennart TautzEmail author
  • Teodora Chitiboi
  • Anja Hennemuth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8896)


MRI perfusion imaging enables the non-invasive assessment of myocardial blood supply. The purpose of the presented work is to enable a quantitative assessment of the image sequences for clinical application. To this end an automatic preprocessing including ROI detection and outlier removal has been combined with a phase-based registration approach and an object-based myocardium segmentation. The suggested processing pipeline has been tested with 21 image sequences provided by the STACOM motion correction challenge. The corrected image sequences have been assessed by comparison with gamma variate curves fitted to the voxels intensity curves. The automatic segmentation could be compared with expert segmentations provided by the challenge organizers. The results indicate an improvement through the motion correction and a good agreement with the reference segmentation in most cases.


Perfusion Morphon Registration Quadrature filter OBIA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. EPFL Tech. Rep. 149300 (2010)Google Scholar
  2. 2.
    Chitiboi, T., Hennemuth, A., Tautz, L., Huellebrand, M., Frahm, J., Linsen, L., Hahn, H.: Context-based segmentation and analysis of multi-cycle real-time cardiac MRI. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 943–946 (2014)Google Scholar
  3. 3.
    Chitiboi, T., Hennemuth, A., Tautz, L., Stolzmann, P., Donati, O.F., Linsen, L., Hahn, H.K.: Automatic detection of myocardial perfusion defects using object-based myocardium segmentation. In: 2013 Computing in Cardiology Conference (CinC), pp. 639–642. IEEE (2013)Google Scholar
  4. 4.
    Cowell, W. (ed.): Sources and Development of Mathematical Software. Prentice-Hall Series in Computational Mathematics. Prentice-Hall, Upper Saddle River (1984)Google Scholar
  5. 5.
    Gupta, S., Solaiyappan, M., Beache, G., Arai, A., Foo, T.: Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn. Reson. Med. 49(3), 506–514 (2003)CrossRefGoogle Scholar
  6. 6.
    Gupta, V., Hendriks, E., Milles, J., van der Geest, R.J., Jerosch-Herold, M., Reiber, J., Lelieveldt, B.: Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences. Acad. Radiol. 17, 1375–1385 (2010)CrossRefGoogle Scholar
  7. 7.
    Gupta, V., Kirisli, H., Hendriks, E., van der Geest, R., van de Giessen, M., Niessen, W., Reiber, J., Lelieveldt, B.: Cardiac MR perfusion image processing techniques: a survey. Med. Image Anal. 16(4), 767–785 (2012)CrossRefGoogle Scholar
  8. 8.
    Homeyer, A., Schwier, M., Hahn, H.: A generic concept for object-based image analysis. In: VISAPP, pp. 530–533 (2010)Google Scholar
  9. 9.
    Horkaew, P.: Analysis of CMR perfusion imaging based on statistical appearance models. In: KST, pp. 6–11 (2010)Google Scholar
  10. 10.
    Jerosch-Herold, M., Seethamraju, R., Swingen, C., Wilke, N., Stillman, A.: Analysis of myocardial perfusion MRI. J. Magn. Reson. Imaging 19(6), 758–770 (2004). CrossRefGoogle Scholar
  11. 11.
    Knutsson, H., Andersson, M.: Morphons: segmentation using elastic canvas and paint on priors. In: Symposium on Image Analysis SSBA, vol. 2005, pp. 73–76 (2005)Google Scholar
  12. 12.
    Li, C., Sun, Y.: Nonrigid registration of myocardial perfusion MRI using pseudo ground truth. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 165–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Madsen, M.: A simplified formulation of the gamma variate function. Physics in Medicine and Biology 37(7), 1597 (1992). CrossRefMathSciNetGoogle Scholar
  14. 14.
    Milles, J., van der Geest, R., Jerosch-Herold, M., Reiber, J., Lelieveldt, B.I.: Fully automated motion correction in first-pass myocardial perfusion MR image sequences. IEEE Trans. Med. Imaging 27(11), 1611–1621 (2008). CrossRefGoogle Scholar
  15. 15.
    Mischi, M., den Boer, J., Korsten, H.: On the physical and stochastic representation of an indicator dilution curve as a gamma variate. Physiol. Meas. 29(3), 281–294 (2008). CrossRefGoogle Scholar
  16. 16.
    Santarelli, M., Positano, V., Michelassi, C., Lombardi, M., Landini, L.: Automated cardiac MR image segmentation: theory and measurement evaluation. Med. Eng. Phys. 25(2), 149–159 (2003)CrossRefGoogle Scholar
  17. 17.
    Spreeuwers, L., Breeuwer, M.: Automatic detection of myocardial boundaries in MR cardio perfusion images. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1228–1231. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Tautz, L., Hennemuth, A., Andersson, M., Seeger, A., Knutsson, H., Friman, O.: Phase-based non-rigid registration of myocardial perfusion MRI image sequences. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 516–519, April 2010Google Scholar
  19. 19.
    Weng, A., Ritter, C., Lotz, J., Beer, M., Hahn, D., Koestler, H.: Automatic postprocessing for the assessment of quantitative human myocardial perfusion using mri. Eur. Radiol. 20(6), 1356–1365 (2010)CrossRefGoogle Scholar
  20. 20.
    Xue, H., Guehring, J., Srinivasan, L., Zuehlsdorff, S., Saddi, K., Chefdhotel, C., Hajnal, J.V., Rueckert, D.: Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 35–43. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lennart Tautz
    • 1
    Email author
  • Teodora Chitiboi
    • 1
  • Anja Hennemuth
    • 1
  1. 1.Fraunhofer MEVISBremenGermany

Personalised recommendations