Structural Abnormality Detection of ARVC Patients via Localised Distance-to-Average Mapping

  • Kristin McLeodEmail author
  • Marcus Noack
  • Jørg Saberniak
  • Kristina Haugaa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8896)


Many heart conditions result in irregular ventricular shape caused by, for example, increased ventricular pressure, regurgitated blood and poor electrical conduction, which affect the overall function of the heart. Structural abnormalities can be characteristic of a disease. Therefore, identifying structurally abnormal regions can give indicators for diagnosis and can provide useful information to guide long-term therapy planning. Given the difficulty in quantitatively measuring structural abnormalities in patients where the ventricular structure is significantly affected by the pathology, such as patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), a method for computing the distance between a normal geometry and patient-specific geometries is presented. The proposed method involves computing distance maps that can visually emphasise regions with high variation from a normal geometry. A consistent parameterisation of the ventricular shape is imposed using an open-source implementation of the LDDMM algorithm on currents to deform patient-specific geometries to a mean surface, which is also computed using the LDDMM algorithm. The chosen shape parameterisation can be applied to meshes extracted from any segmentation algorithm, allowing a wide range of data to be analysed from different hospitals, different scanners and different imaging modalities. Given a consistent shape parameterisation of all meshes, distance maps can be generated by plotting the Euclidean distance point-wise on a triangulated mesh to visualise regions of high shape variability. The proposed method was applied to 10 ARVC patients to highlight patient-specific shape features.


Cardiovascular Magnetic Resonance Right Ventricle Structural Abnormality Arrhythmogenic Right Ventricular Cardiomyopathy Arrhythmogenic Right Ventricular Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corrado, D., Basso, C., Rizzoli, G., Schiavon, M., Thiene, G.: Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiology 42(11), 1959–1963 (2003)CrossRefGoogle Scholar
  2. 2.
    Firoozi, S., Sharma, S., Hamid, M.S., McKenna, W.J.: Sudden death in young athletes: Hcm or arvc? Cardiovascular Drugs and Therapy 16(1), 11–17 (2002)CrossRefGoogle Scholar
  3. 3.
    Corrado, D., Thiene, G.: Arrhythmogenic right ventricular cardiomyopathy / dysplasia: Clinical impact of molecular genetic studies. Circulation 113(13) (2006)Google Scholar
  4. 4.
    Marcus, F.I., McKenna, W.J., Sherrill, D., et al.: Diagnosis of arrhythmogenic right ventricular cardiomyopathy / dysplasia: Proposed modification of the task force criteria. Euro. Heart J. 31(7) (2010)Google Scholar
  5. 5.
    Anderson, E.L.: Arrhythmogenic right ventricular dysplasia. Am. Fam. Physician 73(8) (2006)Google Scholar
  6. 6.
    Te Riele, A.S., James, C.A., Philips, B., et al.: Mutation-positive arrhythmogenic right ventricular dysplasia / cardiomyopathy: The triangle of dysplasia displaced. J. Car. Electro. 24(12) (2013)Google Scholar
  7. 7.
    Tandri, H., Macedo, R., Calkins, H., et al.: Role of magnetic resonance imaging in arrhythmogenic right ventricular dysplasia: Insights from the north american arrhythmogenic right ventricular dysplasia (ARVD/C) study. Am. Heart J. 155(1) (2008)Google Scholar
  8. 8.
    Healy-Brucker, A., Pousset, F., Almeida, S., Gandjbakhch, E., Duthoit, G., Hebert, J., Boubrit, L., Hammoudi, N., Isnard, R., Hidden-Lucet, F.: Usefulness of right ventricle 2D strain in arrythmogenic right ventricle dysplasia / cardiomyopathy. Euro. Heart J. 34 (2013)Google Scholar
  9. 9.
    Lorenzi, M., Ayache, N., Pennec, X.: Regional flux analysis of longitudinal atrophy in alzheimer’s disease. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 739–746. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Mansi, T., Voigt, I., Leonardi, B., Pennec, X., Durrleman, S., Sermesant, M., Delingette, H., Taylor, A.M., Boudjemline, Y., Pongiglione, G., et al.: A statistical model for quantification and prediction of cardiac remodelling: Application to Tetralogy of Fallot. IEEE Trans. Med. Im. 30(9) (2011)Google Scholar
  11. 11.
    Zhang, K., Cheng, Y., Leow, W.K.: Dense correspondence of skull models by automatic detection of anatomical landmarks. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 229–236. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Praun, E., Sweldens, W., Schröder, P.: Consistent mesh parameterizations. In: Proc. Computer Graphics and Interactive Techniques, pp. 179–184. ACM (2001)Google Scholar
  13. 13.
    Angelini, E., Jin, Y., Laine, A.: State of the art of level set methods in segmentation and registration of medical imaging modalities. In: Handbook of Biomedical Image Analysis, pp. 47–101. Springer (2005)Google Scholar
  14. 14.
    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Med. Im. Anal. 13(5) (2009)Google Scholar
  15. 15.
    Tobon-Gomez, C., De Craene, M., Mcleod, K., Tautz, L., Shi, W., Hennemuth, A., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Med. Im. Anal 17(6), 632–648 (2013)CrossRefGoogle Scholar
  16. 16.
    Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., Arheden, H.: Design and validation of segment-freely available software for cardiovascular image analysis. BMC Med. Im.Google Scholar
  17. 17.
    Schulz-Menger, J., Bluemke, D.A., et al.: Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J. of Cardio. Mag. Res. 15, 35 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kristin McLeod
    • 1
    • 2
    • 5
    Email author
  • Marcus Noack
    • 1
    • 5
    • 6
  • Jørg Saberniak
    • 3
    • 4
    • 5
  • Kristina Haugaa
    • 3
    • 4
    • 5
  1. 1.Simula Research LaboratoryOsloNorway
  2. 2.INRIA Méditerranée, ASCLEPIOS ProjectSophia AntipolisFrance
  3. 3.Oslo University Hospital RikshospitaletOsloNorway
  4. 4.University of OsloOsloNorway
  5. 5.Centre for Cardiological InnovationLysakerNorway
  6. 6.Kalkulo ASOsloNorway

Personalised recommendations