Estimation of Diastolic Biomarkers: Sensitiviy to Fibre Orientation
Abstract
An accurate estimation of myocardial stiffness and decaying active tension is critical for the characterization of the diastolic function of the heart. Computational cardiac models can be used to analyse deformation and pressure data from the left ventricle in order to estimate these diastolic metrics. The results of this methodology depend on several model assumptions. In this work we reveal a nominal impact of the choice of myocardial fibre orientation between a rule-based description and personalised approach based on diffusion-tensor magnetic resonance imaging. This result suggests the viability of simplified clinical imaging protocols for the model-based estimation of diastolic biomarkers.
Keywords
Cardiac computational physiology Diastolic biomarkers Model personalization Fibre orientationPreview
Unable to display preview. Download preview PDF.
References
- 1.Carapella, V., Bordas, R., Pathmanathan, P., Lohezic, M., Schneider, J.E., Kohl, P., Burrage, K., Grau, V.: Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PLoS ONE 9(4), e92792 (2014)CrossRefGoogle Scholar
- 2.Geerts, L., Kerckhoffs, R., Bovendeerd, P., Arts, T.: Towards patient specific models of cardiac mechanics: a sensitivity study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 81–90. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 3.Gil, D., et al.: What a difference in biomechanics cardiac fiber makes. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 253–260. Springer, Heidelberg (2013)Google Scholar
- 4.Imperiale, A., Routier, A., Durrleman, S., Moireau, P.: Improving efficiency of data assimilation procedure for a biomechanical heart model by representing surfaces as currents. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 342–351. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 5.Lamata, P., Niederer, S., Nordsletten, D., Barber, D., Roy, I., Hose, D., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic hermite meshes. Medical Image Analysis 15(6), 801–813 (2011)CrossRefGoogle Scholar
- 6.Lamata, P., Niederer, S., Plank, G., Smith, N.: Generic conduction parameters for predicting activation waves in customised cardiac electrophysiology models. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 252–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 7.Lamata, P., Roy, I., Blazevic, B., Crozier, A., Land, S., Niederer, S., Rod Hose, D., Smith, N.: Quality metrics for high order meshes: Analysis of the mechanical simulation of the heart beat. IEEE Transactions on Medical Imaging 32(1), 130–138 (2013)CrossRefGoogle Scholar
- 8.Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., Land, S., Lewandowski, A., Barber, D., Niederer, S., Smith, N.: An automatic service for the personalization of ventricular cardiac meshes. Journal of the Royal Society Interface 11(91) (2014)Google Scholar
- 9.Land, S., Niederer, S., Lamata, P., Smith, N.: Improving the stability of cardiac mechanical simulations. IEEE Transactions on Biomedical Engineering (2015, in press)Google Scholar
- 10.Land, S., Niederer, S., Smith, N.: Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Transactions on Biomedical Engineering 59(5), 1219–1228 (2012)CrossRefGoogle Scholar
- 11.Mcmurray, J., et al.: Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. European Journal of Heart Failure 14(8), 803–869 (2012)CrossRefGoogle Scholar
- 12.Okamoto, R.J., Moulton, M.J., Peterson, S.J., Li, D., Pasque, M.K., Guccione, J.M.: Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. J. Biomech. Eng. 122(5), 479–487 (2000)CrossRefGoogle Scholar
- 13.Omens, J.H., MacKenna, D.A., McCulloch, A.D.: Measurement of strain and analysis of stress in resting rat left ventricular myocardium. Journal of Biomechanics 26(6), 665–676 (1993)CrossRefGoogle Scholar
- 14.Usyk, T., Mazhari, R., McCulloch, A.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. Journal of Elasticity and the Physical Science of Solids 61(1–3), 143–164 (2000)CrossRefMATHGoogle Scholar
- 15.Wang, V.Y., Lam, H., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative mri of cardiac structure and function. Medical Image Analysis 13(5), 773–784 (2009)CrossRefGoogle Scholar
- 16.Xi, J., Shi, W., Rueckert, D., Razavi, R., Smith, N., Lamata, P.: Understanding the need of ventricular pressure for the estimation of diastolic biomarkers. Biomechanics and Modeling in Mechanobiology 13(4), 747–57 (2014)CrossRefGoogle Scholar
- 17.Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Medical Image Analysis 17(2), 133–146 (2013)CrossRefGoogle Scholar
- 18.Zile, M., Baicu, C., Gaasch, W.: Diastolic heart failure - abnormalities in active relaxation and passive stiffness of the left ventricle. New England Journal of Medicine 350(19), 1953–1959+2018 (2004)Google Scholar