Creep Behavior Modeling of Polyoxymethylene (POM) Applying Rheological Models

  • Holm Altenbach
  • Anna Girchenko
  • Andreas Kutschke
  • Konstantin Naumenko
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 57)


Polyoxymethylene (POM) is a semi-crystalline thermoplastic polymer with broad technical application. Microstructure after solidifying is strongly dependent on the thermodynamical conditions. As an outcome macroscopic observable time dependent behavior is complex and significantly non-linear. To describe creep behavior of POM a rheological model with five elements is utilized. Creep behavior of POM under monotonic loading and constant temperature conditions can be described in a satisfying manner according to experimental results. A three-dimensional generalization with a comparable backstress formulation will be given. Finally, influence of data scattering will be estimated applying statistical analysis.


Creep Polyoxymethylene Rheological models Backstress 


  1. Altenbach H (2012) Kontinuumsmechanik, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  2. Altenbach H, Naumenko K, Zhilin P (2003) A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin Mech Thermodyn 15(6):539–570Google Scholar
  3. Besseling JF (1994) Mathematical modelling of inelastic deformation. Springer, New YorkCrossRefzbMATHGoogle Scholar
  4. Bonnet M (2014) Werkstoffauswahl-Kunststoffe. In: Kunststofftechnik. Springer, pp 219–234Google Scholar
  5. Gisekus H (1994) Phänomenologische Rheologie: Eine Einführung. Springer, BerlinCrossRefGoogle Scholar
  6. Haupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Advanced Texts in Physics. Springer, BerlinGoogle Scholar
  7. Katti S, Schultz M (1982) The microstructure of injection-molded semicrystalline polymers: a review. Polym Eng Sci 22(16):1001–1017CrossRefGoogle Scholar
  8. Kim GM, Michler G (1998) Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: part 1. Characterization of deformation processes in dependence on phase morphology. Polymer 39(23):5689–5697CrossRefGoogle Scholar
  9. Krawietz A (1986) Materialtheorie: mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Springer, New YorkCrossRefzbMATHGoogle Scholar
  10. Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. J Strain Anal Eng Des 49(6):421–428CrossRefGoogle Scholar
  11. Mileva D, Androsch R, Cavallo D, Alfonso G (2012) Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling. Eur Polym J 48:1082–1092CrossRefGoogle Scholar
  12. Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multipass weld metal. Arch Appl Mech 74(11–12):808–819CrossRefzbMATHGoogle Scholar
  13. Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Mater Sci Eng: A 618:368–376CrossRefGoogle Scholar
  14. Naumenko K, Altenbach H, Kutschke A (2011) A combined model for hardening, softening, and damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech 20(4):578–597CrossRefGoogle Scholar
  15. Palmov V (1998) Vibrations of elasto-plastic bodies. Foundation of Engineering Mechanics. Springer, BerlinGoogle Scholar
  16. Plummer C, Kausch HH (1995) Real-time image analysis and numerical simulation of isothermal spherulite nucleation and growth in polyoxymethylene. Colloid Polym Sci 273(8):719–732CrossRefGoogle Scholar
  17. Reiner M (1960) Deformation, strain and flow: an elementary introduction to rheology. H.K Lewis, LondonGoogle Scholar
  18. Vilchevskaya E, Ivanova E, Altenbach H (2014) Description of liquid–gas phase transition in the frame of continuum mechanics. Contin Mech Thermodyn 26(2):221–245. doi: 10.1007/s00161-013-0298-5

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Anna Girchenko
    • 1
  • Andreas Kutschke
    • 1
  • Konstantin Naumenko
    • 1
  1. 1.Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations