A Compact Linear Programming Relaxation for Binary Sub-modular MRF

  • Junyan Wang
  • Sai-Kit Yeung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8932)


Direct linear programming (LP) solution to binary sub-modular MRF energy has recently been promoted because i) the solution is identical to the solution by graph cuts, ii) LP is naturally parallelizable and iii) it is flexible in incorporation of constraints. Nevertheless, the conventional LP relaxation for MRF incurs a large number of auxiliary variables and constraints, resulting in expensive consumption in memory and computation. In this work, we propose to approximate the solution of the conventional LP at a significantly smaller complexity by solving a novel compact LP model. We further establish a tightenable approximation bound between our LP model and the conventional LP model. Our LP model is obtained by linearizing a novel l 1-norm energy derived from the Cholesky factorization of the quadratic form of the MRF energy, and it contains significantly fewer variables and constraints compared to the conventional LP relaxation. We also show that our model is closely related to the total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. The latter property is very desirable in most of the imaging and vision applications. In the experiments, our method achieves similarly satisfactory results compared to the conventional LP, yet it requires significantly smaller computation cost.


Markov Random Field Interior Point Method Linear Programming Model Markov Random Field Model Pairwise Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-a review. TPAMI 29, 1274–1279 (2007)CrossRefGoogle Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI 23, 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Grady, L.: Random walks for image segmentation. TPAMI 28, 1768–1783 (2006)CrossRefGoogle Scholar
  4. 4.
    Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: CVPR. IEEE (2007)Google Scholar
  5. 5.
    Li, H., Shen, C.: Interactive color image segmentation with linear programming. Machine Vision and Applications 21, 403–412 (2010)CrossRefGoogle Scholar
  6. 6.
    Bhusnurmath, A., Taylor, C.J.: Graph cuts via l_1 norm minimization. TPAMI 30, 1866–1871 (2008)CrossRefGoogle Scholar
  7. 7.
    Derigs, U., Meier, W.: Implementing goldberg’s max-flow-algorithm — a computational investigation. Zeitschrift für Operations Research 33, 383–403 (1989)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Jamriska, O., Sykora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In: IEEE CVPR, pp. 3673–3680 (2012)Google Scholar
  9. 9.
    Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV (2009)Google Scholar
  10. 10.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? TPAMI 26, 147–159 (2004)CrossRefGoogle Scholar
  11. 11.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: ICCV (2001)Google Scholar
  12. 12.
    Komodakis, N., Paragios, N., Tziritas, G.: Mrf energy minimization and beyond via dual decomposition. TPAMI 33, 531–552 (2011)CrossRefGoogle Scholar
  13. 13.
    Kappes, J.H., Andres, B., Hamprecht, F.A., Schnorr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N.: et al.: A comparative study of modern inference techniques for discrete energy minimization problems. In: CVPR, pp. 1328–1335 (2013)Google Scholar
  14. 14.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)CrossRefGoogle Scholar
  15. 15.
    Chan, T., Vese, L.: Active contours without edges. TIP 10, 266–277 (2001)zbMATHGoogle Scholar
  16. 16.
    Ye, Y.: An o(n 3 l) potential reduction algorithm for linear programming. Mathematical Programming 50, 239–258 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of the ACM (JACM) 31, 114–127 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. Journal of Global Optimization 1, 15–22 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR (2010)Google Scholar
  22. 22.
    Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. TPAMI 31, 2290–2297 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, P., Shen, C., van den Hengel, A.: A fast semidefinite approach to solving binary quadratic problems. In: CVPR (2013)Google Scholar
  24. 24.
    Wu, T.P., Yeung, S.K., Jia, J., Tang, C.K., Medioni, G.G.: A closed-form solution to tensor voting: Theory and applications. TPAMI 34, 1482–1495 (2012)CrossRefGoogle Scholar
  25. 25.
    Yeung, S.K., Wu, T.P., Tang, C.K., Chan, T.F., Osher, S.J.: Normal estimation of a transparent object using a video. In: TPAMI (2014)Google Scholar
  26. 26.
    Yeung, S.K., Wu, T.P., Tang, C.K.: Extracting smooth and transparent layers from a single image. In: CVPR (2008)Google Scholar
  27. 27.
    Yeung, S.K., Wu, T.P., Tang, C.K., Chan, T.F., Osher, S.: Adequate reconstruction of transparent objects on a shoestring budget. In: CVPR (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Junyan Wang
    • 1
  • Sai-Kit Yeung
    • 1
  1. 1.Singapore University of Technology and DesignSingapore

Personalised recommendations