Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV

  • Ecaterina Bodnariuc
  • Arati Gurung
  • Stefania Petra
  • Christoph Schnörr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8932)

Abstract

We present a novel approach to detect the trajectories of particles by combining (a) adaptive dictionaries that model physically consistent spatio-temporal events, and (b) convex programming for sparse matching and trajectory detection in image sequence data. The mutual parametrization of these two components are mathematically designed so as to achieve provable convergence of the overall scheme to a fixed point. While this work is motivated by the task of estimating instantaneous vessel blood flow velocity using ultrasound image velocimetry, our contribution from the optimization point of view may be of interest also to related pattern and image analysis tasks in different application fields.

Keywords

motion estimation fixed point algorithm adaptive dictionaries sparse representation sparse error correction Echo PIV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, H., Hertzberg, J., Shandas, R.: Development and Validation of Echo PIV. Exp. Fluids 36(3), 455–462 (2004)CrossRefGoogle Scholar
  2. 2.
    Poelma, C., van der Mijle, R.M.E., Mari, J.M., Tang, M.X., Weinberg, P.D., Westerweel, J.: Ultrasound Imaging Velocimetry: Toward Reliable Wall Shear Stress Measurements. European Journal of Mechanics - B/Fluids 35, 70–75 (2012)CrossRefGoogle Scholar
  3. 3.
    Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Image Velocimery – A Practical Guide. Springer (2007)Google Scholar
  4. 4.
    Schiffner, M.F., Schmitz, G.: Fast Image Acquisition in Pulse-Echo Ultrasound Imaging using Compressed Sensing. In: 2012 IEEE International Ultrasonics Symposium (IUS), pp. 1944–1947. IEEE (2012)Google Scholar
  5. 5.
    Rodriguez, S., Jacob, X., Gibiat, V.: Plane Wave Echo Particle Image Velocimetry. Proceedings of Meetings of Acoustics, POMA 19 (2013)Google Scholar
  6. 6.
    Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)CrossRefGoogle Scholar
  7. 7.
    Sutera, S., Skalak, R.: The History of Poiseuille’s Law. Ann. Rev. Fluid Mech. 25, 1–19 (1993)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Adrian, R.J.: Twenty Years of Particle Image Velocimetry. Experiments in Fluids 39(2), 159–169 (2005)CrossRefGoogle Scholar
  9. 9.
    Westerweel, J.: Fundamentals of Digital Particle Image Velocimetry. Measurement Science and Technology 8(12), 1379–1392 (1997)CrossRefGoogle Scholar
  10. 10.
    Slawski, M., Hein, M.: Sparse Recovery by Thresholded Non-Negative Least Squares. In: Proc. NIPS, pp. 1926–1934 (2011)Google Scholar
  11. 11.
    Candès, E.J., Tao, T.: Decoding by Linear Programming. IEEE Transactions on Information Theory 51(12), 4203–4215 (2005)CrossRefMATHGoogle Scholar
  12. 12.
    Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer (2009)Google Scholar
  13. 13.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications: Fixed Point Theorems, vol. I. Springer (1993)Google Scholar
  14. 14.
    Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 2.1. (March 2014), http://cvxr.com/cvx

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ecaterina Bodnariuc
    • 1
  • Arati Gurung
    • 2
  • Stefania Petra
    • 1
  • Christoph Schnörr
    • 1
  1. 1.Image and Pattern Analysis GroupUniversity of HeidelbergGermany
  2. 2.Laboratory for Aero and Hydrodynamics (3ME-P&E)Delft University of TechnologyThe Netherlands

Personalised recommendations