Energy-Aware Cloud Management Through Progressive SLA Specification

  • Dražen LučaninEmail author
  • Foued Jrad
  • Ivona Brandic
  • Achim Streit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8914)


Novel energy-aware cloud management methods dynamically reallocate computation across geographically distributed data centers to leverage regional electricity price and temperature differences. As a result, a managed virtual machine (VM) may suffer occasional downtimes. Current cloud providers only offer high availability VMs, without enough flexibility to apply such energy-aware management. In this paper we show how to analyse past traces of dynamic cloud management actions based on electricity prices and temperatures to estimate VM availability and price values. We propose a novel service level agreement (SLA) specification approach for offering VMs with different availability and price values guaranteed over multiple SLAs to enable flexible energy-aware cloud management. We determine the optimal number of such SLAs as well as their availability and price guaranteed values. We evaluate our approach in a user SLA selection simulation using Wikipedia and Grid’5000 workloads. The results show higher customer conversion and \(39\%\) average energy savings per VM.


Cloud computing SLA Pricing Energy efficiency 



The work described in this paper has been funded through the Haley project (Holistic Energy Efficient Hybrid Clouds) as part of the TU Vienna Distinguished Young Scientist Award 2011.


  1. 1.
  2. 2.
  3. 3.
    Abbasi, Z., Mukherjee, T., Varsamopoulos, G., Gupta, S.K.S.: Dynamichosting management of web based applications over clouds. In: 2011 18th International Conference on High Performance Computing (HiPC), pp. 1–10, December 2011Google Scholar
  4. 4.
    Alfeld, S., Barford, C., Barford, P.: Toward an analytic framework for the electrical power grid. In: Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet. e-Energy ’12, , pp. 9:1–9:4. ACM, New York (2012)Google Scholar
  5. 5.
    Berndt, P., Maier, A.: Towards sustainable IaaS pricing. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 173–184. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs between profit and customer satisfaction for service provisioning in the cloud. In: Proceedings of the 20th International Symposium on High Performance Distributed Computing, HPDC ’11, pp. 229–238. ACM, New York (2011)Google Scholar
  7. 7.
    Dražen Lučanin: Philharmonic (2014).
  8. 8.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)Google Scholar
  9. 9.
    Ibrahim, S., He, B., Jin, H.: Towards pay-as-you-consume cloud computing. In: 2011 IEEE International Conference on Services Computing (SCC), pp. 370–377, July 2011Google Scholar
  10. 10.
    Jrad, F., Tao, J., Knapper, R., Flath, C.M., Streit, A.: A utility-based approach for customised cloud service selection. Int. J. Comput. Sci. Eng. (forthcoming)Google Scholar
  11. 11.
    Koomey, J.G.: Worldwide electricity used in data centers. Environ. Res. Lett. 3, 034008 (2008)CrossRefGoogle Scholar
  12. 12.
    Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, T.D.: Reducing electricity cost through virtual machine placement in high performance computing clouds. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11, pp. 22:1–22:12. ACM, New York (2011)Google Scholar
  13. 13.
    Lin, M., Liu, Z., Wierman, A., Andrew, L.: Online algorithms for geographical load balancing. In: 2012 International Green Computing Conference (IGCC), pp. 1–10, June 2012Google Scholar
  14. 14.
    Liu, H., Xu, C.Z., Jin, H., Gong, J., Liao, X.: Performance and energy modeling for live migration of virtual machines. In: Proceedings of the 20th International Symposium on High Performance Distributed Computing, pp. 171–182 (2011)Google Scholar
  15. 15.
    Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.: Renewable and cooling aware workload management for sustainable data centers. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pp. 175–186. ACM, New York (2012)Google Scholar
  16. 16.
    Lučanin, D., Brandic, I.: Take a break: cloud scheduling optimized for real-time electricity pricing. In: 2013 Third International Conference on Cloud and Green Computing (CGC), pp. 113–120. IEEE (2013)Google Scholar
  17. 17.
    O’Connor, P., Kleyner, A.: Practical Reliability Engineering. Wiley, Oxford (2011)CrossRefGoogle Scholar
  18. 18.
    Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the electric bill for internet-scale systems. SIGCOMM Comput. Commun. Rev. 39(4), 123–134 (2009)CrossRefGoogle Scholar
  19. 19.
    Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia workload analysis for decentralized hosting. Elsevier Comput. Netw. 53(11), 1830–1845 (2009)CrossRefGoogle Scholar
  20. 20.
    Vieira, C.C.A., Bittencourt, L.F., Madeira, E.R.M.: Towards a PaaS architecture for resource allocation in IaaS providers considering different charging models. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 185–196. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Weron, R.: Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, 1st edn. Wiley, Chichester (2006)CrossRefGoogle Scholar
  22. 22.
    Xu, H., Feng, C., Li, B.: Temperature aware workload management in geo-distributed datacenters. In: Presented as part of the 10th International Conference on Autonomic Computing, pp. 303–314. USENIX, Berkeley (2013)Google Scholar
  23. 23.
    Zhou, R., Wang, Z., McReynolds, A., Bash, C.E., Christian, T.W., Shih, R.: Optimization and control of cooling microgrids for data centers. In: 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 338–343. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dražen Lučanin
    • 1
    Email author
  • Foued Jrad
    • 2
  • Ivona Brandic
    • 1
  • Achim Streit
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations