Towards Petri Net-Based Economical Analysis for Streaming Applications Executed Over Cloud Infrastructures

  • Rafael Tolosana-Calasanz
  • José Ángel Bañares
  • José-Manuel Colom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8914)


Streaming Applications are complex systems where the existence of concurrency, transmission of data and sharing of resources are essential characteristics. When these applications are run over Cloud infrastructures, the execution may incur an economical cost, and it can be therefore important to conduct an analysis prior to any execution. Such an analysis can explore how economic cost is interrelated to performance and functionality. In this paper, a methodology for the construction of this kind of applications is proposed based on the intensive use of formal models. Petri Nets are the formalism considered here for capturing the active entities of the system (processes), the flow of data between the processes and the shared resources for which they are competing. For the construction of a model aimed at studying different aspects of the system and for decision-taking design, an abstraction process of the system at different levels of detail is needed. This leads to several system models representing facets from the functional level to the operational level. Petri Net models are used to obtain qualitative information of the streaming application, but their enrichment with time and cost information provides with analysis on performance and economic behaviours under different scenarios.


Economical cost of clouds Petri Nets Streaming application 



This work was supported by the Spanish Ministry of Economy under the program “Programa de I+D+i Estatal de Investigación, Desarrollo e innovación Orientada a los Retos de la Sociedad”, project id TIN2013-40809-R.


  1. 1.
    Bañares, J.Á., Rana, O.F., Tolosana-Calasanz, R., Pham, C.: Revenue creation for rate adaptive stream management in multi-tenancy environments. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 122–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bernardi, S., Merseguer, J.: Performance evaluation of UML design with stochastic well-formed nets. J. Syst. Softw. 80(11), 1843–1865 (2007)CrossRefGoogle Scholar
  3. 3.
    Bernardo, M., Ciancarini, P., Donatiello, L.: Aempa: a process algebraic description language for the performance analysis of software architectures. In: Workshop on Software and Performance, pp. 1–11 (2000)Google Scholar
  4. 4.
    Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O., Koutsopoulos, H., Moran, C.: Ibm infosphere streams for scalable, real-time, intelligent transportation services. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pp. 1093–1104. ACM, New York (2010).
  5. 5.
    Bioernstad, B.: A Workflow Approach to Stream Processing. Phd thesis, ETH Zurich, Computer Science Department (2008).
  6. 6.
    Campos, J., Chiola, G., Colom, J.M., Silva, M.: Properties and performance bounds for timed marked graphs. IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 39(5), 386–401 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Campos, J., Silva, M.: Embedded product-form queueing networks and the improvement of performance bounds for petri net systems. Perform. Eval. 18(1), 3–19 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, W., Ferreira da Silva, R., Deelman, E., Sakellariou, R.: Balanced task clustering in scientific workflows. In: 2013 IEEE 9th International Conference on eScience (eScience), pp. 188–195 (2013)Google Scholar
  9. 9.
    Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor, I., Wang, I.: Programming scientific and distributed workflow with Triana services: Research articles. Concurr. Comput. Pract. Exper. 18(10), 1021–1037 (2006)CrossRefGoogle Scholar
  10. 10.
    Dou, L., Zinn, D., McPhillips, T., Kohler, S., Riddle, S., Bowers, S., Ludascher, B.: Scientific workflow design 2.0: demonstrating streaming data collections in kepler. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 1296–1299, April 2011Google Scholar
  11. 11.
    Gohad, A., Narendra, N.C., Ramachandran, P.: Cloud pricing models: a survey and position paper. In: 2013 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), pp. 1–8. IEEE (2013)Google Scholar
  12. 12.
    Kung, S.Y., Arun, K.S., Gal-Ezer, R.J., Rao, D.V.B.: Wavefront array processor: Language, architecture, and applications. IEEE Trans. Comput. 31(11), 1054–1066 (1982). CrossRefGoogle Scholar
  13. 13.
    Kungt, H., Leisersont, C.E.: Systolic arrays (for vlsi), p. 256. Social Industry Application, Philadelphia (1979)Google Scholar
  14. 14.
    Lee, K., Paton, N., Sakellariou, R., Deelman, E., Fernandes, A., Mehta, G.: Adaptive workflow processing and execution in Pegasus. In: Third International Workshop on Workflow Management and Applications in Grid Environments (WaGe08), Kunming, China, pp. 99–106, 25–28 May 2008Google Scholar
  15. 15.
    Marinescu, D.C.: Cloud Computing: Theory and Practice. Morgan Kaufmann, Boston (2013)Google Scholar
  16. 16.
    Menascé, D.A., Gomaa, H.: A method for design and performance modeling of client/server systems. IEEE Trans. Software Eng. 26, 1066–1085 (2000)CrossRefGoogle Scholar
  17. 17.
    Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77, 541–580 (1989)CrossRefGoogle Scholar
  18. 18.
    Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing platform. In: Proceedings of the 2010 IEEE International Conference on Data Mining Workshops, ICDMW ’10, pp. 170–177. IEEE Computer Society, Washington, DC (2010).
  19. 19.
    Ngu, A.H.H., Bowers, S., Haasch, N., McPhillips, T., Critchlow, T.: Flexible scientific workflow modeling using frames, templates, and dynamic embedding. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 566–572. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Pautasso, C., Alonso, G.: Parallel computing patterns for Grid workflows. In: Proceedings of the HPDC2006 Workshop on Workflows in Support of Large-Scale Science (WORKS06), Paris, France, 19–23 June 2006Google Scholar
  21. 21.
    Tolosana-Calasanz, R., Bañares, J.A., Rana, O.F.: Autonomic streaming pipeline for scientific workflows. Concurr. Comput. Pract. Exper. 23(16), 1868–1892 (2011)CrossRefGoogle Scholar
  22. 22.
    Tolosana-Calasanz, R., Bañares, J.Á., Pham, C., Rana, O.F.: Enforcing qos in scientific workflow systems enacted over cloud infrastructures. J. Comput. Syst. Sci. 78(5), 1300–1315 (2012)CrossRefGoogle Scholar
  23. 23.
    Tolosana-Calasanz, R., Rana, O.F., Bañares, J.A.: Automating performance analysis from Taverna workflows. In: Chaudron, M.R.V., Ren, X.-M., Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafael Tolosana-Calasanz
    • 1
  • José Ángel Bañares
    • 1
  • José-Manuel Colom
    • 1
  1. 1.Dpto. de Informática e Ingeniería de SistemasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations