Liana Diversity and the Future of Tropical Forests

  • Mason Campbell
  • Ainhoa Magrach
  • William F. Laurance
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 5)


Lianas contribute substantially to the total species richness of tropical forests, accounting for up to a quarter of the woody plant diversity. However, liana diversity is intrinsically linked with forest condition and consequently is altered by human-induced forest modifications. Multiple environmental drivers including forest fragmentation, logging and climate change are impacting tropical forests; the extent and intensity of their effects will likely define future global liana diversity.


Climate change Disturbance Fragmentation Hunting Lianas Logging Vines 



This research was supported by an ARC Discovery Grant awarded to WL. AM was funded by an ETH fellowship.


  1. Abernethy KA, Coad L, Taylor G, Lee ME, Maisels F (2013) Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos Trans R Soc B Biol Sci 368:1625. doi: 10.1098/rstb.2012.0303 Google Scholar
  2. Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583):999–1002PubMedGoogle Scholar
  3. Addo-Fordjour P, Obeng S, Addo MG, Akyeampong S (2009) Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana. For Ecol Manage 258:728–734. doi: 10.1016/j.foreco.2009.05.010 Google Scholar
  4. Addo-Fordjour P, Rahmad ZB, Amui J, Pinto C, Dwomoh M (2012a) Patterns of liana community diversity and structure in a tropical rainforest reserve, Ghana: effects of human disturbance. Afr J Ecol 51:217–227. doi: 10.1111/aje.12025 Google Scholar
  5. Addo-Fordjour P, Rahmad ZB, Shahrul AMS (2012b) Effects of human disturbance on liana community diversity and structure in a tropical rainforest, Malaysia: implication for conservation. J Plant Ecol 5(4):391–399. doi: 10.1093/jpe/rts012 Google Scholar
  6. Addo-Fordjour P, El Duah P, Agbesi DKK (2013) Factors influencing liana species richness and structure following anthropogenic disturbance in a tropical forest, Ghana. ISRN Forestry 2013:11. doi: 10.1155/2013/920370 Google Scholar
  7. Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco Dry Forest, Argentina. Ecology 75(2):330–351. doi: 10.2307/1939538 Google Scholar
  8. Allen BP, Sharitz RR, Goebel PC (2005) Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest. For Ecol Manage 218(1–3):259–269. doi: 10.1016/j.foreco.2005.08.021 Google Scholar
  9. Alvira D, Putz FE, Fredericksen TS (2004) Liana loads and post-logging liana densities after liana cutting in a lowland forest in Bolivia. For Ecol Manage 190(1):73–86. doi: 10.1016/j.foreco.2003.10.007 Google Scholar
  10. Anbarashan M, Parthasarathy N (2013) Diversity and ecology of lianas in tropical dry evergreen forests on the Coromandel Coast of India under various disturbance regimes. Flora – morphology, distribution, functional ecology of plants 208(1):22–32. doi: 10.1016/j.flora.2012.12.004
  11. Ansell FA, Edwards DP, Hamer KC (2011) Rehabilitation of logged rain forests: avifaunal composition, habitat structure, and implications for biodiversity-friendly REDD+. Biotropica 43(4):504–511. doi: 10.1111/j.1744-7429.2010.00725.x Google Scholar
  12. Arroyo-Rodriguez V, Toledo-Aceves T (2009) Impact of landscape spatial pattern on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl Veg Sci 12(3):340–349Google Scholar
  13. Asensio N, Cristobal-Azkarate J, Dias PAD, Vea JJ, Rodriguez-Luna E (2007) Foraging habits of Alouatta palliata mexicana in three forest fragments. Folia Primatol 78(3):141–153. doi: 10.1159/000099136 PubMedGoogle Scholar
  14. Asner GP, Martin RE (2012) Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecol Lett 15(9):1001–1007PubMedGoogle Scholar
  15. Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23(6):1386–1395. doi: 10.1111/j.1523-1739.2009.01333.x PubMedGoogle Scholar
  16. Australian Tropical Rainforest Plants Edition 6.1 [online version] (2010) Centre for Australian National Biodiversity Research.
  17. Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer JD, de Carvalho O (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manage 261(1):68–77. doi: 10.1016/j.foreco.2010.09.029 Google Scholar
  18. Balfour DA, Bond WJ (1993) Factors limiting climber distribution and abundance in a southern. Afr For J Ecol 81(1):93–100Google Scholar
  19. Benitez-Malvido J, Martinez-Ramos M (2003) Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv Biol 17(2):389–400. doi: 10.1046/j.1523-1739.2003.01120.x Google Scholar
  20. Bennett E, Eves H, Robinson J, Wilkie D (2002) Why is eating bush meat a biodiversity crisis. Conserv Biol Pract 3:28–29Google Scholar
  21. Blaser J, Sarre A, Poore D, Johnson S (2011) Status of tropical forest management 2011, ITTO technical series no 38. ITTO, YokohamaGoogle Scholar
  22. Briant G, Gond V, Laurance SGW (2010) Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol Conserv 143(11):2763–2769. doi:
  23. Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141(7):1745–1757. doi: 10.1016/j.biocon.2008.04.024 Google Scholar
  24. Cai ZQ, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161(1):25–33. doi: 10.1007/s00442-009-1355-4 PubMedCentralPubMedGoogle Scholar
  25. Chittibabu CV, Parthasarathy N (2001) Liana diversity and host relationships in a tropical evergreen forest in the Indian Eastern Ghats. Ecol Res 16(3):519–529Google Scholar
  26. Cochrane MA, Laurance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18(3):311–325Google Scholar
  27. Cochrane MA, Laurance WF (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio 37(7/8):522–527PubMedGoogle Scholar
  28. Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284(5421):1832–1835. doi: 10.1126/science.284.5421.1832 PubMedGoogle Scholar
  29. Condon MA, Sasek TW, Strain BR (1992) Allocation patterns in 2 tropical vines in response to increased atmospheric CO2. Funct Ecol 6(6):680–685Google Scholar
  30. Corlett RT (2007) The impact of hunting on the Mammalian Fauna of tropical Asian forests. Biotropica 39(3):292–303. doi: 10.1111/j.1744-7429.2007.00271.x Google Scholar
  31. Dalling JW, Schnitzer SA, Baldeck C, Harms KE, John R, Mangan SA, Lobo E, Yavitt JB, Hubbell SP (2012) Resource-based habitat associations in a neotropical liana community. J Ecol 100(5):1174–1182. doi: 10.1111/j.1365-2745.2012.01989.x Google Scholar
  32. DeWalt SJ, Schnitzer S, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16(1):1–19Google Scholar
  33. DeWalt SJ, Schnitzer SA, Chave J, Bongers F, Burnham RJ, Cai ZQ, Chuyong G, Clark DB, Ewango CEN, Gerwing JJ, Gortaire E, Hart T, Ibarra-Manriquez G, Ickes K, Kenfack D, Macia MJ, Makana JR, Martinez-Ramos M, Mascaro J, Moses S, Muller-Landau HC, Parren MPE, Parthasarathy N, Perez-Salicrup DR, Putz FE, Romero-Saltos H, Thomas D (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42(3):309–317. doi: 10.1111/j.1744-7429.2009.00589.x Google Scholar
  34. Ding Y, Zang R (2009) Effects of logging on the diversity of lianas in a lowland tropical rain forest in Hainan Island, South China. Biotropica 41(5):618–624. doi: 10.1111/j.1744-7429.2009.00515.x Google Scholar
  35. Dirzo R, Raven P (2003) Global state of biodiversity and loss. Ann Rev Environ Resour 28:137–167Google Scholar
  36. Durigon J, Durán SM, Gianoli E (2013) Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. J Trop Ecol 29(4):357–360. doi: 10.1017/S0266467413000308 Google Scholar
  37. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455(7209):92–95. doi:
  38. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051):686–688. doi:
  39. Fox JED (1968) Logging damage and the influence of climber cutting prior to logging in the lowland Dipterocarp forest of Sabah. Malays For 31:326–347Google Scholar
  40. Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K, Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci 110(45):18110–18115. doi: 10.1073/pnas.1302584110 PubMedCentralPubMedGoogle Scholar
  41. Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, CambridgeGoogle Scholar
  42. Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science. doi: 10.1126/science.1257469 PubMedCentralPubMedGoogle Scholar
  43. Gerwing JJ (2001) Testing liana cutting and controlled burning as silvicultural treatments for a logged forest in the eastern Amazon. J Appl Ecol 38(6):1264–1276Google Scholar
  44. Gerwing JJ (2006) The influence of reproductive traits on liana abundance 10 years after conventional and reduced-impacts logging in the eastern Brazilian Amazon. For Ecol Manage 221(1–3):83–90. doi: 10.1016/j.foreco.2005.09.008 Google Scholar
  45. Gerwing JJ, Uhl C (2002) Pre-logging liana cutting reduces liana regeneration in logging gaps in the eastern Brazilian Amazon. Ecol Appl 12(6):1642–1651Google Scholar
  46. Gerwing JJ, Vidal E (2002) Changes in liana abundance and species diversity eight years after liana cutting and logging in an eastern Amazonian forest. Conserv Biol 16(2):544–548Google Scholar
  47. Gianoli E (2004) Evolution of a climbing habit promotes diversification in flowering plants. Proc R Soc B Biol Sci 271(1552):2011–2015. doi: 10.1098/rspb.2004.2827 Google Scholar
  48. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369):378–381. doi:
  49. Granados J, Korner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Chang Biol 8(11):1109–1117Google Scholar
  50. Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunawati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Natl Acad Sci U S A 105(27):9439–9444PubMedCentralPubMedGoogle Scholar
  51. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi: 10.1126/science.1244693 PubMedGoogle Scholar
  52. Hegarty EE, Clifford HT (1991) Climbing angiosperms in the Australian Flora. In: Werren G, Kershaw P (eds) The rainforest legacy; Australian national rainforests study, vol 2, Flora and fauna of the rainforests. Australian Government Publishing Services, CanberraGoogle Scholar
  53. Hernandez-Stefanoni JL (2005) Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecol 179(1):53–65. doi: 10.1007/s11258-004-5776-1 Google Scholar
  54. Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98(4):879–887. doi: 10.1111/j.1365-2745.2010.01676.x Google Scholar
  55. Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5(02):173–185. doi: 10.1017/S0266467400003448 Google Scholar
  56. Korner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond Ser B Biol Sci 359(1443):493–498. doi: 10.1098/rstb.2003.1429 Google Scholar
  57. Körner C (2009) Responses of humid tropical trees to rising CO2. Ann Rev Ecol Evol Syst 40(1):61–79. doi: 10.1146/annurev.ecolsys.110308.120217 Google Scholar
  58. Laporte NT, Stabach JA, Grosch R, Lin TS, Goetz SJ (2007) Expansion of industrial logging in Central Africa. Science 316(5830):1451. doi: 10.1126/science.1141057 PubMedGoogle Scholar
  59. Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744. doi: 10.1016/j.biocon.2008.05.011 Google Scholar
  60. Laurance WF, Bierregaard RO Jr (eds) (1997) Tropical forest remnants: ecology, management, and conservation of fragmented communities. The University of Chicago Press, ChicagoGoogle Scholar
  61. Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33(4):399–408. doi: 10.1111/j.1442-9993.2008.01895.x Google Scholar
  62. Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55(1):77–92. doi: 10.1016/0006-3207(91)90006-u Google Scholar
  63. Laurance WF, Laurance SG, Ferreira LV, Rankin-de Merona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278(5340):1117–1118. doi: 10.1126/science.278.5340.1117 Google Scholar
  64. Laurance WF, Ferreira LV, Rankin-de Merona JM, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040Google Scholar
  65. Laurance WF, Gascon C, Rankin-de Merona JM (1999) Predicting effects of habitat destruction on plant communities: a test of a model using. Amazon Trees Ecol Appl 9(2):548–554. doi: 10.1890/1051-0761(1999)009[0548:peohdo];2 Google Scholar
  66. Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Conservation: rainforest fragmentation kills big trees. Nature 404(6780):836PubMedGoogle Scholar
  67. Laurance WF, Perez-Salicrup D, Delamonica P, Fearnside PM, D’Angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001a) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82(1):105–116Google Scholar
  68. Laurance WF, Williamson GB, Delamonica P, Oliveira A, Lovejoy TE, Gascon C, Pohl L (2001b) Effects of a strong drought on Amazonian forest fragments and edges. J Trop Ecol 17(6):771–785. doi: 10.1017/S0266467401001596 Google Scholar
  69. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ribeiro JELS, Giraldo JP, Lovejoy TE, Condit R, Chave J, Harms KE, D’Angelo S (2006) Rapid decay of tree-community composition in Amazonian forest fragments. Proc Natl Acad Sci U S A 103(50):19010–19014PubMedCentralPubMedGoogle Scholar
  70. Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669. doi:
  71. Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Bruce Williamson G, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144(1):56–67. doi: 10.1016/j.biocon.2010.09.021 Google Scholar
  72. Laurance WF, Andrade AS, Magrach A, Camargo J, Campbell M, Fearnside PM, Edwards W, Valsko JJ, Lovejoy TE, Laurance SG (2014) Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology 95(11):3018–3026. doi: 10.1890/14-0330.1
  73. Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ, Campbell M, Fearnside PM, Edwards W, Lovejoy TE, Laurance SG (2014a) Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95(6):1604–1611. doi: 10.1890/13-1571.1 PubMedGoogle Scholar
  74. Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, Van Der Ree R, Arrea IB (2014b) A global strategy for road building. Nature 513(7517):229–232. doi: 10.1038/nature13717, PubMedGoogle Scholar
  75. Ledo A, Schnitzer SA (2014) Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95(8):2169–2178. doi: 10.1890/13-1775.1 PubMedGoogle Scholar
  76. Letcher SG, Chazdon RL (2009) Lianas and self-supporting plants during tropical forest succession. For Ecol Manage 257(10):2150–2156. doi: 10.1016/j.foreco.2009.02.028 Google Scholar
  77. Lienert J (2004) Habitat fragmentation effects on fitness of plant populations – a review. J Nature Conserv 12(1):53–72. doi:
  78. Londre RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology 87(12):2973–2978. doi: 10.1890/0012-9658(2006)87[2973:tdolat];2 PubMedGoogle Scholar
  79. Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc B Biol Sci 359(1443):311–329Google Scholar
  80. Malizia A, Grau HR (2008) Landscape context and microenvironment influences on liana communities within treefall gaps. J Veg Sci 19(5):597–604. doi: 10.3170/2008-8-18413 Google Scholar
  81. Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical cyclone damage. Nat Clim Change 2(3):205–209. doi:
  82. Mohandass D, Hughes AC, Campbell M, Davidar P (2014) Effects of patch size on liana diversity and distributions in the tropical montane evergreen forests of the Nilgiri mountains, southern India. J Trop Ecol 30:579–590Google Scholar
  83. Muller-Landau HC (2007) Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39(3):372–384. doi: 10.1111/j.1744-7429.2007.00290.x Google Scholar
  84. Muthuramkumar S, Parthasarathy N (2000) Alpha diversity of lianas in a tropical evergreen forest in the Anamalais, Western Ghats, India. Divers Distrib 6(1):1–14. doi: 10.2307/2673371 Google Scholar
  85. Muthuramkumar S, Ayyappan N, Parthasarathy N, Mudappa D, Raman TRS, Selwyn MA, Pragasan LA (2006) Plant community structure in tropical rain forest fragments of the Western Ghats, India. Biotropica 38(2):143–160. doi: 10.1111/j.1744-7429.2006.00118.x Google Scholar
  86. Nabe-Nielsen J, Kollmann J, Pena-Claros M (2009) Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. For Ecol Manage 257(3):987– 993. doi: 10.1016/j.foreco.2008.10.033 Google Scholar
  87. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269PubMedGoogle Scholar
  88. Oliveira AT, deMello JM, Scolforo JRS (1997) Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in south-eastern Brazil over a five-year period (1987–1992). Plant Ecol 131(1):45–66Google Scholar
  89. Parren MPE, Doumbia F (2005) Logging and lianas in West Africa. CABI Publishing, Wallingford, pp 183–201Google Scholar
  90. Parthasarathy N, Muthuranikumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manage 190(1):15–31. doi: 10.1016/j.foreco.2003.10.003 Google Scholar
  91. Penalosa J (1984) Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica 16(1):1–9. doi: 10.2307/2387886 Google Scholar
  92. Peres CA, Palacios E (2007) Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39(3):304–315. doi: 10.1111/j.1744-7429.2007.00272.x Google Scholar
  93. Perez-Salicrup DR, Claros A, Guzman R, Licona JC, Ledezma F, Pinard MA, Putz FE (2001) Cost and efficiency of cutting lianas in a lowland liana forest of Bolivia. Biotropica 33(2):324–329Google Scholar
  94. Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Ceron C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418(6899):770–774. doi: 10.1038/nature00926 PubMedGoogle Scholar
  95. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El[thinsp]Nino and related precipitation variability. Nature 502(7472):541–545. doi: 10.1038/nature12580 PubMedGoogle Scholar
  96. Putz FE (1984) The natural history of lianas on Barro-Colorado island, Panama. Ecology 65(6):1713–1724Google Scholar
  97. Putz FE, Mooney HA (1991) The biology of vines. Cambridge University Press, Cambridge, UKGoogle Scholar
  98. Santos KD, Kinoshita LS, Rezende AA (2009) Species composition of climbers in seasonal semideciduous forest fragments of Southeastern Brazil. Biota Neotropica 9(4):175–188Google Scholar
  99. Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166(2):262–276PubMedGoogle Scholar
  100. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17(5):223–230. doi:
  101. Schnitzer SA, Bongers F (2005) Lianas and gap-phase regeneration: implications for forest dynamics and species diversity. CABI Publishing, Wallingford, pp 59–72Google Scholar
  102. Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14(4):397–406. doi: 10.1111/j.1461-0248.2011.01590.x PubMedGoogle Scholar
  103. Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82(4):913–919Google Scholar
  104. Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13(7):849–857. doi: 10.1111/j.1461-0248.2010.01480.x PubMedGoogle Scholar
  105. Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88(4):655–666Google Scholar
  106. Schnitzer SA, Parren MPE, Bongers F (2004) Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. For Ecol Manage 190(1):87–98. doi: 10.1016/j.foreco.2003.10.008
  107. Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93(6):1115–1125. doi: 10.1111/j.1365-2745.2005.01056.x Google Scholar
  108. Schnitzer S, Bongers F, Wright SJ (2011) Community and ecosystem ramifications of increasing lianas in neotropical forests. Plant Signal Behav 6(4):598–600PubMedCentralPubMedGoogle Scholar
  109. Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109(40):16083–16088. doi: 10.1073/pnas.1211658109 PubMedCentralPubMedGoogle Scholar
  110. Thorpe SKS, Holder R, Crompton RH (2009) Orangutans employ unique strategies to control branch flexibility. Proc Natl Acad Sci 106(31):12646–12651. doi: 10.1073/pnas.0811537106 PubMedCentralPubMedGoogle Scholar
  111. Tobin MF, Wright AJ, Mangan SA, Schnitzer SA (2012) Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Biological Science Faculty Publications (Ecosphere) 3(2):Publication 2. doi: 10.1890/ES11-00322.1
  112. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño-southern oscillation through a glacial-interglacial cycle. Science 291(5508):1511–1517. doi: 10.1126/science.1057969 PubMedGoogle Scholar
  113. Turton SM, Siegenthaler DT (2004) Immediate impacts of a severe tropical cyclone on the microclimate of a rain forest canopy in north-east Australia. J Trop Ecol 20(5):583–586Google Scholar
  114. van der Heijden GMF, Phillips OL (2008) What controls liana success in Neotropical forests? Glob Ecol Biogeogr 17(3):372–383. doi: 10.1111/j.1466-8238.2007.00376.x Google Scholar
  115. van der Sande M, Poorter L, Schnitzer S, Markesteijn L (2013) Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia 172(4):961–972. doi: 10.1007/s00442-012-2563-x PubMedGoogle Scholar
  116. Webb LJ (1958) Cyclones as an ecological factor in tropical lowland rainforest, North Queensland. Aust J Bot 6(3):220–230Google Scholar
  117. Whigham DF, Olmsted I, Cano EC, Harmon ME (1991) The impact of Hurricane Gilbert on trees, litterfall, and woody debris in a dry tropical forest in the Northeastern Yucatan Peninsula. Biotropica 23(4):434–441. doi: 10.2307/2388263 Google Scholar
  118. Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 237–256Google Scholar
  119. Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78(2):356–373Google Scholar
  120. Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20(10):553–560. doi: 10.1016/j.tree.2005.07.009 PubMedGoogle Scholar
  121. Wright SJ, Calderon O, Hernandez A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85(2):484–489Google Scholar
  122. Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005) Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J Trop Ecol 21(3):307–315. doi: 10.2307/4092035 Google Scholar
  123. Wright SJ, Hernandez A, Condit R (2007) The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 39(3):363–371. doi: 10.1111/j.1744-7429.2007.00289.x Google Scholar
  124. Yanoviak SP, Schnitzer S (2013) Functional roles of lianas for forest canopy animals. In: Lowman M, Devy S, Ganesh T (eds) Tree tops at risk. Springer, New YorkGoogle Scholar
  125. Yorke SR, Schnitzer SA, Mascaro J, Letcher SG, Carson WP (2013) Increasing liana abundance and basal area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica 45(3):317–324. doi: 10.1111/btp.12015 Google Scholar
  126. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418. doi: 10.1016/0169-5347(96)10045-8 PubMedGoogle Scholar
  127. Zhu H, Xu ZF, Wang H, Li BG (2004) Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodivers Conserv 13(7):1355–1372. doi: 10.1023/B:BIOC.0000019397.98407.c3 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mason Campbell
    • 1
  • Ainhoa Magrach
    • 2
  • William F. Laurance
    • 1
  1. 1.Centre for Tropical Environmental and Sustainability Science (TESS) and College of Marine and Environmental SciencesJames Cook UniversityCairnsAustralia
  2. 2.Ecosystem Management Group, Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland

Personalised recommendations