The Meaning of Hypostasis in Diophantus’ Arithmetica

Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 312)


Historians of ancient philosophy and theological writers often come up against the puzzling issue of understanding the meaning of the term hypostasis used by different ancient authors. One could hardly expect that the same issue would be of interest for historians of ancient mathematics. Indeed, altogether absent from the works of Euclid, Archimedes, and Apollonius, and scarcely appearing in a nonmathematical context in the works of Heron and Nicomachus, the term hypostasis and its cognates appear 127 times in the six books of Diophantus’ Arithmetica preserved in Greek. This chapter examines Diophantus’ use of the term hypostasis and argues in favour of interpreting it as a term for numbers qua specific, individual entities. It is composed of three parts. The first part discusses the different statuses of numbers in a worked-out problem according to Diophantus’ general method, and the relevant issue of the Diophantine conception of an arithmetical problem; the second part investigates all instances of the term within Diophantus’ text; and the third part surveys briefly the testimonies of the Byzantine commentators of the Arithmetica, which provide further evidence supporting the interpretation proposed in this paper.


Diophantus Hypostasis Greek mathematics 



I thank Jeffrey Oaks, Stathis Psillos, Paul Kalligas, Michalis Sialaros, and Vassilios Karakostas, who kindly read this paper and suggested improvements. Above all, however, I express my gratitude to Kostas Gavroglu. Our friendship and collaboration for more than 20 years have been for me a unique source of inspiration and encouragement.


  1. Allard, André. 1980. Diophante d’Alexandrie: Les Arithmétiques. Histoire du texte grec, édition critique, traductions et scholies. Thèse universitaire, Université de Louvain.Google Scholar
  2. Allard, André. 1983. Les scolies aux Arithmétiques de Diophante d’Alexandrie dans le Matritensis Bibl. Nat. 4678 et les Vaticani gr. 191 et 304. Byzantion 53: 664–760.Google Scholar
  3. Bernard, Alain, and Jean Christianidis. 2012. A new analytical framework for the understanding of Diophantus’ Arithmetica I–III. Archive for History of Exact Sciences 66: 1–69.CrossRefGoogle Scholar
  4. Christianidis, Jean. 2007. The way of Diophantus. Some clarifications on Diophantus’ method of solution. Historia Mathematica 34: 289–305.CrossRefGoogle Scholar
  5. Christianidis, Jean, and Jeffrey Oaks. 2013. Practicing algebra in late antiquity. The problem-solving of Diophantus of Alexandria. Historia Mathematica 40: 127–163.CrossRefGoogle Scholar
  6. Friedlein, Godofredus. 1873. Procli Diadochi in primum Euclidis Elementorum librum commentarii. Leipzig: Teubner.Google Scholar
  7. Heron. 1903. Heron Alexandrinus opera, vol. III, ed. H. Schoene. Leipzig: Teubner.Google Scholar
  8. Khazdan, A.P. (ed.). 1991. The Oxford dictionary of Byzantium, 3 vols. New York/Oxford: Oxford University Press.Google Scholar
  9. Klein, Jacob. 1992. Greek mathematical thought and the origin of algebra. Trans. Eva Brann. New York: Dover.Google Scholar
  10. Lampe, G.W.H. 1961. A Patristic Greek lexicon. Oxford: Clarendon.Google Scholar
  11. Liddell, H.G., and R. Scott. 1996. A Greek-English lexicon, 9th ed. Oxford: Clarendon.Google Scholar
  12. Rashed, Roshdi. 1984. Diophante: Les Arithmétiques, 2 vols, ed. & trans. R. Rashed. Paris: Les Belles Lettres.Google Scholar
  13. Romano, F., and D.P. Taormina (eds.). 1994. Hyparxis e hypostasis nel neoplatonismo. Firenze: Leo S. Olschki.Google Scholar
  14. Sesiano, Jacques. 1982. Books IV to VII of Diophantus’s Arithmetica in the Arabic translation attributed to Qustā ibn Lūqā. New York: Springer.Google Scholar
  15. Smith, Andrew. 1994. Hypostasis and hyparxis in Porphyry. See Romano and Taormina 1994, 33–41.Google Scholar
  16. Tannery, Paul. 1893–1895. Diophanti Alexandrini Opera Omnia, 2 vols, ed. & trans. P. Tannery. Leipzig: Teubner.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of AthensAthensGreece
  2. 2.Centre Alexandre KoyréParisFrance

Personalised recommendations