Fuzzy Modeling and Control of Centrifugal Compressor Used in Gas Pipelines Systems

Part of the Applied Condition Monitoring book series (ACM, volume 2)

Abstract

Respond to changing technology industrial installations, this work propose solutions to the modeling and control problems in industrial processes with the use of new approaches. The objective of this work is the use of fuzzy techniques in modeling and control in the study of gas compression system instability. The obtained results show clearly how the main dynamic characteristics, in our examined compression system, are reproduced using the proposed fuzzy model, allowing better performance during its control synthesis operation.

Keywords

Gas compression system surge phenomena centrifugal compressor exploitation instability fuzzy modeling fuzzy control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamy, J., Schwung, A.: Qualitative modeling of dynamical systems employing continuous-time recurrent fuzzy systems. Fuzzy Sets and Systems 161(23), 3026–3043 (2010)CrossRefMathSciNetMATHGoogle Scholar
  2. Fiordaliso, A.: A nonlinear forecasts combination method based on Takagi–Sugeno fuzzy systems. International Journal of Forecasting 14(3), 367–379 (1998)CrossRefGoogle Scholar
  3. Esogbue, A.O.: Fuzzy sets modeling and optimization for disaster control systems planning. Fuzzy Sets and Systems 81(1), 169–183 (1996)CrossRefMathSciNetGoogle Scholar
  4. Bøhagen, B., Gravdahl, J.T.: Active surge control of compression system using drive torque. Automatica 44(4), 1135–1140 (2008)CrossRefMathSciNetGoogle Scholar
  5. Bortolet, P., Merlet, E., Boverie, S.: Fuzzy modeling and control of an engine air inlet with exhaust gas recirculation. Control Engineering Practice 7(10), 1269–1277 (1999)CrossRefGoogle Scholar
  6. Wong, C.-C., Lin, N.-S.: Rule extraction for fuzzy modeling. Fuzzy Sets and Systems 88(1), 23–30 (1997)CrossRefGoogle Scholar
  7. Fink, et al.: Surge dynamics in free-spool centrifugal compressor system. Journal of Turbomachinery 114, 321–332 (1992)CrossRefGoogle Scholar
  8. Panoutsos, G., Mahfouf, M.: A neural-fuzzy modelling framework based on granular computing: Concepts and applications. Fuzzy Sets and Systems 161(21), 2808–2830 (2010)CrossRefMathSciNetGoogle Scholar
  9. Greitzer, E.M.: Surge and rotating stall in axial flow compressors, part I: Theoretical compression system model. Journal of Engineering for Power 98, 190–198 (1976)CrossRefGoogle Scholar
  10. Greitzer, E.M., Moore, F.K.: A Theory of Post-Stall Transients in Axial Compression Systems: Part II – Applications. American Society of Mechanical Engineers, paper 85-GT-172 (1985)Google Scholar
  11. Ahmed, H., Daoudi, A., Guemana, M.: SCADA for Surge Control: Using a SCADA network to handle surge control in gas suppression systems in pipelines. Control Global | Process Automation Technologies Journal, ISA Transactions 24(3), 69–71 (2011)Google Scholar
  12. Ahmed, H., Daoudi, A., Laroussi, K.: Application of fuzzy diagnosis in fault detection and isolation to the compression system protection. Control and Intelligent Systems 39(3), 151–158 (2011)MATHGoogle Scholar
  13. Ahmed, H., Laaouad, F., Laroussi, K.: A Numerical structural approach to surge detection and isolation in compression systems using fuzzy logic controller. International Journal of Control, Automation, and Systems, IJCAS 9(1), 69–79 (2011)CrossRefGoogle Scholar
  14. Ahmed, H., Daoudi, A., Laroussi, K.: Modelling and control of surge in centrifugal compression based on fuzzy rule system. Studies in Informatics and Control (SIC) 19(4), 347–356 (2010)Google Scholar
  15. Ahmed, H., Laroussi, K., Laaouad, F.: Robust fuzzy fault detection and isolation approach applied to surge in centrifugal compressor modeling and control. Fuzzy Information and Engineering Journal 02(01), 49–73 (2010)CrossRefGoogle Scholar
  16. Ahmed, H., Laaouad, F., Laroussi, K.: Fuzzy logic approach applied to the surge detection and isolation in centrifugal compressor. Automatic Control and Computer Sciences 44(01), 53–59 (2010)CrossRefGoogle Scholar
  17. Ahmed, H., Guemana, M., Daoudi, A.: Spectral analysis approach applied to the vibrations detection and isolation in centrifugal pump used in petroleum industry. In: 5th International Congress on Technical Diagnostics, Didactics Center, AGH Univeristy of Science and Technology, Kraków, Poland, September 3-5 (2012)Google Scholar
  18. Hafaifa, A., Laaouad, F., Laroussi, K.: Fuzzy modeling and control for detection and isolation of surge in industrial centrifugal compressors. Automatic Control Journal of the University of Belgrade 19(01), 19–26 (2009)CrossRefGoogle Scholar
  19. Gravdahl, J.T., Egeland, O., Vatland, S.O.: Drive torque actuation in active surge control of centrifugal compressors. Automatica 38(11), 1881–1893 (2002)CrossRefMathSciNetMATHGoogle Scholar
  20. Guelton, K., Bouarar, T., Manamanni, N.: Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi–Sugeno systems—A descriptor redundancy approach. Fuzzy Sets and Systems 160(19), 2796–2811 (2009)CrossRefMathSciNetMATHGoogle Scholar
  21. Wang, L.-X.: Modeling and control of hierarchical systems with fuzzy systems. Automatica 33(6), 1041–1053 (1997)CrossRefMathSciNetMATHGoogle Scholar
  22. Mei, F., Man, Z., Nguyen, T.: Fuzzy modelling and tracking control of nonlinear systems. Mathematical and Computer Modelling 33(6-7), 759–770 (2001)CrossRefMATHGoogle Scholar
  23. Bernal, M., Guerra, T.M., Kruszewski, A.: A membership-function-dependent approach for stability analysis and controller synthesis of Takagi–Sugeno models. Fuzzy Sets and Systems 160(19), 2776–2795 (2009)CrossRefMathSciNetMATHGoogle Scholar
  24. Guemana, M., Aissani, S., Hafaifa, A.: Use a new calibration method for gas pipelines: An advanced method improves calibrating orifice flowmeters while reducing maintenance costs. Hydrocarbon Processing Journal 90(8), 63–68 (2011)Google Scholar
  25. Guemana, M., Aissani, S., Hafaifa, A.: Flow measurement and control in gas pipeline system using intelligent sonic nozzle sensor. Studies in Informatics and Control (SIC) 20(2), 85–96 (2011)Google Scholar
  26. Sugeno, M., Kang, G.T.: Fuzzy modelling and control of multilayer incinerator. Fuzzy Sets and Systems 18(3), 329–345 (1986)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ahmed Hafaifa
    • 1
  • Guemana Mouloud
    • 1
    • 2
  • Belhadef Rachid
    • 3
  1. 1.Applied Automation and Industrial Diagnostic LaboratoryUniversity of DjelfaDjelfaAlgeria
  2. 2.Faculty of Science and TechnologyUniversity of MedeaMedeaAlgeria
  3. 3.Faculty of Science and TechnologyUniversity of Sedik Ben yahia of JijelOuled AissaAlgeria

Personalised recommendations