Self-stabilizing Algorithms for Connected Vertex Cover and Clique Decomposition Problems

  • François Delbot
  • Christian Laforest
  • Stephane Rovedakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum Connected Vertex Cover problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al. [11] proposed a new centralized algorithm with a constant approximation ratio of 2 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest.

Keywords

Distributed algorithms Self-stabilization Connected Vertex Cover Connected Minimal Clique Partition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Azemi, F.M., Karaata, M.H.: Brief announcement: A stabilizing algorithm for finding two edge-disjoint paths in arbitrary graphs. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 433–434. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster algorithm in mobile ad hoc networks. In: 8th Int. Symp. on Parallel Architectures, Algorithms, and Networks, pp. 436–441 (2005)Google Scholar
  3. 3.
    Belkouch, F., Bui, M., Chen, L., Datta, A.K.: Self-stabilizing deterministic network decomposition. J. Parallel Distrib. Comput. 62(4), 696–714 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected Dominating Set in Sensor Networks and MANETs. Springer US (2005)Google Scholar
  5. 5.
    Burman, J., Kutten, S.: Time optimal asynchronous self-stabilizing spanning tree. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: A self-stabilizing k-clustering algorithm for weighted graphs. J. Par. Distrib. Comput. 70(11), 1159–1173 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing Letters 49(6), 297–301 (1994)CrossRefMATHGoogle Scholar
  8. 8.
    Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search on arbitrary networks. The Computer Journal 49(3), 268–280 (2006)CrossRefGoogle Scholar
  9. 9.
    Cournier, A., Rovedakis, S., Villain, V.: The first fully polynomial stabilizing algorithm for BFS tree construction. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 159–174. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Competitive self-stabilizing k-clustering. In: IEEE 32nd Int. Conference on Distributed Computing Systems, pp. 476–485 (2012)Google Scholar
  11. 11.
    Delbot, F., Laforest, C., Phan, R.: New approximation algorithms for the vertex cover problem. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 438–442. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Delbot, F., Laforest, C., Rovedakis, S.: Self-stabilizing algorithms for connected vertex cover and clique decomposition problems. Tech. rep., HAL (July 2014), https://hal.archives-ouvertes.fr/hal-01053491
  13. 13.
    Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefMATHGoogle Scholar
  14. 14.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals of mathematics 162(1), 439–485 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Dolev, S.: Self-Stabilization. MIT Press (2000)Google Scholar
  16. 16.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing 7(1), 3–16 (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing wireless connected overlays. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 425–439. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algorithms 8(1), 36–49 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Garey, M., Johnson, D.: Computers and Intractability. Freeman and Co., New York (1979)MATHGoogle Scholar
  20. 20.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: 17th Int. Parallel and Distributed Processing Symp., p. 162 (2003)Google Scholar
  21. 21.
    Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. 70(4), 406–415 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Hadid, R., Karaata, M.H.: Stabilizing maximum matching in bipartite networks. Computing 84(1-2), 121–138 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time o(m). Inf. Process. Lett. 80(5), 221–223 (2001)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees. Information Processing Letters 41(2), 109–117 (1992)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ishii, H., Kakugawa, H.: A self-stabilizing algorithm for finding cliques in distributed systems. In: 21st Symp. on Reliable Distributed Systems, pp. 390–395. IEEE Computer Society (2002)Google Scholar
  27. 27.
    Jain, A., Gupta, A.: A distributed self-stabilizing algorithm for finding a connected dominating set in a graph. In: 6th Int. Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 615–619. IEEE Comp. Soc. (2005)Google Scholar
  28. 28.
    Johnen, C.: Memory-efficient self-stabilizing algorithm to construct bfs spanning trees. In: 3rd Workshop on Self-stabilizing Systems, pp. 125–140 (1997)Google Scholar
  29. 29.
    Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algorithm. Theor. Comput. Sci. 410(6-7), 581–594 (2009)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Kamei, S., Izumi, T., Yamauchi, Y.: An asynchronous self-stabilizing approximation for the minimum connected dominating set with safe convergence in unit disk graphs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 251–265. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Kamei, S., Kakugawa, H.: A self-stabilizing distributed approximation algorithm for the minimum connected dominating set. Int. J. Found. Comput. Sci. 21(3), 459–476 (2010)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Kamei, S., Kakugawa, H.: A self-stabilizing 6-approximation for the minimum connected dominating set with safe convergence in unit disk graphs. Theor. Comput. Sci. 428, 80–90 (2012)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Karakostas, G.: A better approximation ratio for the vertex cover problem. In: Int. Colloquium on Automata, Languages and Programming, pp. 1043–1050 (2005)Google Scholar
  34. 34.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Kiniwa, J.: Approximation of self-stabilizing vertex cover less than 2. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 171–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Manne, F., Mjelde, M.: A self-stabilizing weighted matching algorithm. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. 37.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. Theor. Comput. Sci. 410(14), 1336–1345 (2009)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation algorithm for the maximum matching problem. Theor. Comput. Sci. 412(40), 5515–5526 (2011)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Neggazi, B., Haddad, M., Kheddouci, H.: Self-stabilizing algorithm for maximal graph decomposition into disjoint paths of fixed length. In: 4th Workshop on Theoretical Aspects of Dynamic Distributed Systems, pp. 15–19. ACM (2012)Google Scholar
  40. 40.
    Neggazi, B., Haddad, M., Kheddouci, H.: Self-stabilizing algorithm for maximal graph partitioning into triangles. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 31–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  41. 41.
    Neggazi, B., Turau, V., Haddad, M., Kheddouci, H.: A self-stabilizing algorithm for maximal p-star decomposition of general graphs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 74–85. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  42. 42.
    Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad hoc network. In: 5th Annual ACM/IEEE Int. Conference on Mobile Computing and Networking, pp. 151–162 (1999)Google Scholar
  43. 43.
    Petit, F., Villain, V.: Optimal snap-stabilizing depth-first token circulation in tree networks. Journal of Parallel and Distributed Computing 67(1), 1–12 (2007)CrossRefMATHGoogle Scholar
  44. 44.
    Savage, C.D.: Depth-first search and the vertex cover problem. Information Processing Letters 14(5), 233–237 (1982)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Turau, V.: Self-stabilizing vertex cover in anonymous networks with optimal approximation ratio. Parallel Processing Letters 20(2), 173–186 (2010)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Turau, V., Hauck, B.: A fault-containing self-stabilizing (3-2/(delta+1))-approximation algorithm for vertex cover in anonymous networks. Theoretical Computer Science 412(33), 4361–4371 (2011)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Turau, V., Hauck, B.: A new analysis of a self-stabilizing maximum weight matching algorithm with approximation ratio 2. Theor. Comp. Sci. 412(40), 5527–5540 (2011)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New York (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • François Delbot
    • 1
  • Christian Laforest
    • 2
  • Stephane Rovedakis
    • 3
  1. 1.LIP6, CNRS UMR 7606Université Paris Ouest NanterreParis CedexFrance
  2. 2.LIMOS, CNRS UMR 6158, ISIMAUniversité Blaise PascalAubiere CedexFrance
  3. 3.Conservatoire National des Arts et Métiers / CEDRICParis Cedex 03France

Personalised recommendations