Tradeoffs between Cost and Information for Rendezvous and Treasure Hunt

  • Avery Miller
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

Rendezvous and treasure hunt are two basic tasks performed by mobile agents in networks. In rendezvous, two agents, initially located at distinct nodes of the network, traverse edges in synchronous rounds and have to meet at some node. In treasure hunt, a single agent has to find a stationary target (treasure) situated at an unknown node. The network is modeled as an undirected connected graph whose nodes have distinct identities. The cost of a rendezvous algorithm is the worst-case total number of edge traversals performed by both agents until meeting. The cost of a treasure hunt algorithm is the worst-case number of edge traversals performed by the agent until the treasure is found. If the agents have no information about the network, the cost of both rendezvous and treasure hunt can be as large as Θ(e) for networks with e edges.

We study tradeoffs between the amount of information available a priori to the agents and the cost of rendezvous and treasure hunt. Following the paradigm of algorithms with advice, this information is provided to the agents at the start of their navigation by an oracle knowing the network, the starting positions of the agents, and, in the case of treasure hunt, the node where the treasure is hidden. The oracle assists the agents by providing them with a binary string called advice, which can be used by each agent during the algorithm execution. In the case of rendezvous, the advice given to each agent can be different. The length of the string given to the agent in treasure hunt and the sum of the lengths of strings given to the agents in rendezvous is called the size of advice.

Our goal is to find the smallest size of advice which enables the agents to solve rendezvous and treasure hunt at a given cost C in a network with e edges. This size turns out to depend on the initial distance D and on the ratio g = e/C, which is the relative cost gain due to advice. For arbitrary graphs, we give upper and lower bounds of O(Dlog(Dg)) and Ω(Dlogg), respectively, on the optimal size of advice. Hence, our bounds leave only a logarithmic gap in the general case. For the class of trees we give tight upper and lower bounds of Θ(Dlogg).

Keywords

rendezvous treasure hunt advice deterministic algorithm mobile agent cost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA ), pp. 547–556 (2001)Google Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher (2002)Google Scholar
  5. 5.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Information and Computation 106, 234–252 (1993)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics 48, 722–731 (2001)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the Problem of Searching on a Line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 205–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Caminiti, S., Finocchi, I., Petreschi, R.: Engineering tree labeling schemes: A case study on least common ancestor. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 234–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: Gathering. SIAM J. Comput. 41, 829–879 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Transactions on Algorithms 4 (2008)Google Scholar
  14. 14.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. Distributed Computing 25, 165–178 (2012)CrossRefMATHGoogle Scholar
  15. 15.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Transactions on Algorithms 8, article 37 (2012)Google Scholar
  16. 16.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. In: Proc. 32nd ACM Symp. on Principles of Distributed Comp. (PODC), pp. 92–99 (2013)Google Scholar
  18. 18.
    Ellis, R.: Volume of an N-Simplex by Multiple Integration. Elemente der Mathematik 31, 57–59 (1976)MATHGoogle Scholar
  19. 19.
    Emek, Y., Fraigniaud, P., Korman, A., Rosen, A.: Online computation with advice. Theoretical Computer Science 412, 2642–2656 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. Journal of Computer and System Sciences 76, 222–232 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Information and Computation 206, 1276–1287 (2008)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. Theory of Computing Systems 47, 920–933 (2010)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Fusco, E., Pelc, A.: Trade-offs between the size of advice and broadcasting time in trees. Algorithmica 60, 719–734 (2011)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Fusco, E.G., Pelc, A., Petreschi, R.: Use knowledge to learn faster: Topology recognition with advice. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 31–45. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. Journal of Algorithms 53, 85–112 (2004)Google Scholar
  26. 26.
    Hipke, C.A., Icking, C., Klein, R., Langetepe, E.: How to find a point on a line within a fixed distance. Disc. App. Math. 93, 67–73 (1999)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Katz, M., Katz, N., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM Journal of Computing 34, 23–40 (2004)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing 22, 215–233 (2010)CrossRefMATHGoogle Scholar
  29. 29.
    Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Lopez-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays? Theoretical Computer Science 261, 267–295 (2001)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Miller, A., Pelc, A.: Fast rendezvous with advice. In: Proc. 10th Int. Symp. on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS 2014) (2014), Full version at arxiv:1407.1428v1 [cs.DS]Google Scholar
  33. 33.
    Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in networks. In: Proc. 33rd Annual ACM Symposium on Principles of Distributed Computing (PODC 2014 ), pp. 282–290 (2014)Google Scholar
  34. 34.
    Nisse, N., Soguet, D.: Graph searching with advice. Theoretical Computer Science 410, 1307–1318 (2009)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33, 281–295 (1999)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Networks 59, 331–347 (2012)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55 (2008)Google Scholar
  38. 38.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)Google Scholar
  39. 39.
    Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1–24 (2005)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Xin, Q.: Faster treasure hunt and better strongly universal exploration sequences. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 549–560. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Avery Miller
    • 1
  • Andrzej Pelc
    • 1
  1. 1.Université du Québec en OutaouaisGatineauCanada

Personalised recommendations