Advertisement

Approximation Algorithms for the Set Cover Formation by Oblivious Mobile Robots

  • Tomoko Izumi
  • Sayaka Kamei
  • Yukiko Yamauchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

Given n robots and n target points on the plane, the minimum set cover formation (SCF) problem requires the robots to form a set cover by the minimum number of robots. In previous formation problems by mobile robots, such as gathering and pattern formation, the problems consist only of the mobile robots, and there are no points fixed in the environment. In addition, the problems do not require a control of the number of robots constructing the formation. In this paper, we first introduce the formation problem in which robots move so that they achieve a desired deployment with the minimum number of robots for a given set of positions of fixed points.

Since the minimum set cover problem with disks in the centralized settings is NP-hard, our goal is to propose approximation algorithms for the minimum SCF problem. First, we show a minimal SCF algorithm from any initial configuration in the asynchronous system. Moreover, we propose an 8-approximation SCF algorithm in the semi-synchronous system for an initial configuration with a low symmetricity. This approximation algorithm achieves 2(1 + 1/l)2 approximation ratio for an initial configuration with the lowest symmetricity (l ≥ 1).

Keywords

Oblivious mobile robots set cover formation approximation algorithms distributed algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bronnimann, H., Goodrich, M.T.: Almost Optimal Set Covers in Finite VC-Dimension. Discrete & Computational Geometry 14(1), 463–479 (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Deder, T., Greene, D.: Optimal Algorithms for Approximate Clustering. In: Proc. of STOC 1988, pp. 434–444 (1988)Google Scholar
  3. 3.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary Pattern Formation by Asynchronous, Anonymous, Oblivious Robots. Theoretical Computer Science 407, 412–447 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Information Processing Letter 3(12), 133–137 (1981)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern Formation through Optimum Matching by Oblivious CORDA Robots. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Franceschetti, M., Cook, M., Bruck, J.: A Geometric Theorem for Approsimate Disk Covering Algorithms, Report ETR035, Caltech (2001)Google Scholar
  8. 8.
    Fu, B., Chen, Z., Abdelguerfi, M.: An Almost Linear Time 2.8334-Approximation Algorithm for the Disc Covering Problem. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 317–326. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Gonzalez, T.F.: Covering a set of points in multidimensional space. Information Processing Letters 40(4), 181–188 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hochbaum, D.S., Mass, W.: Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI. Journal of the ACM 32(1), 130–136 (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of geometric patterns. SIAM J. of Comput. 28(4), 1347–1363 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Yamashita, M., Suzuki, I.: Characterizing Geometric Patterns Formable by Oblivious Anonymous Mobile Robots. Theoretical Computer Science 411, 2433–2453 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomoko Izumi
    • 1
  • Sayaka Kamei
    • 2
  • Yukiko Yamauchi
    • 3
  1. 1.College of Information Science and EngineeringRitsumeikan UniversityShigaJapan
  2. 2.Graduate School of EngineeringHiroshima UniversityHiroshimaJapan
  3. 3.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations