Advertisement

Apicobasal Polarity and Lumen Formation During Development

  • Adam Navis
  • Michel Bagnat
Chapter

Abstract

Networks of interconnected tubes form the basic structural element of many organs. Tubes are composed of polarized epithelia that enclose a lumen. During organogenesis, lumens form by several distinct mechanisms, ranging from wrapping of an epithelial sheet to generation of a lumen de novo within a rod of cells. Nevertheless, all tube formation processes share some basic common principles that result in the generation of a single, continuous lumen. Interactions with the surrounding environment direct epithelial cell polarization that governs physiological regulators of lumen formation including the actin cytoskeleton, adhesion, vesicular transport, and fluid secretion. Polarized physiological processes mediate the mechanical interactions between epithelial cells and their environment. Polarity within actin cytoskeleton generates contractile forces generating morphogenetic movements. Secretion of fluid or matrix into the lumen generates outward forces driving lumen opening and expansion. Thus, cell polarity is crucial for vectorial transport processes and structural asymmetries during lumen formation. Here we focus on recent discoveries illuminating the relationship between lumen formation and cell polarity in vivo.

Keywords

Polarity Lumen formation Organogenesis 

References

  1. Abrams EW, Andrew DJ (2005) CrebA regulates secretory activity in the Drosophila salivary gland and epidermis. Development 132:2743–2758. doi: 10.1242/dev.01863 PubMedGoogle Scholar
  2. Adams DS, Keller R, Koehl MA (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110:115–130PubMedGoogle Scholar
  3. Alvers A, Ryan S, Scherz PJ et al (2014) Single continuous lumen formation in the zebrafish gut is mediated by smoothened- dependent tissue remodeling. Development 141:1110PubMedGoogle Scholar
  4. Anderson MP, Gregory RJ, Thompson S et al (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205PubMedGoogle Scholar
  5. Aridor M, Bannykh SI, Rowe T, Balch WE (1995) Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 131:875–893. doi: 10.1083/jcb.131.4.875 PubMedGoogle Scholar
  6. Bagnat M, Cheung ID, Mostov KE, Stainier DYR (2007) Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 9:954–960. doi: 10.1038/ncb1621 PubMedGoogle Scholar
  7. Bagnat M, Navis A, Herbstreith S et al (2010) Cse1l is a negative regulator of CFTR-dependent fluid secretion. Curr Biol 20:1840–1845. doi: 10.1016/j.cub.2010.09.012 PubMedCentralPubMedGoogle Scholar
  8. Barrett KE, Keely SJ (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62:535–572. doi: 10.1146/annurev.physiol.62.1.535 PubMedGoogle Scholar
  9. Behr M, Riedel D, Schuh R (2003) The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell 5:611–620PubMedGoogle Scholar
  10. Bernadskaya YY, Patel FB, Hsu HT, Soto MC (2011) Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell 22:2886–2899. doi: 10.1091/mbc.E10-10-0862 PubMedCentralPubMedGoogle Scholar
  11. Buckley CE, Ren X, Ward LC et al (2013) Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO J 32:30–44. doi: 10.1038/emboj.2012.305 PubMedCentralPubMedGoogle Scholar
  12. Buechner M (2002) Tubes and the single C. elegans excretory cell. Trends Cell Biol 12:479–484PubMedGoogle Scholar
  13. Carlson TR, Hu H, Braren R et al (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135:2193–2202. doi: 10.1242/dev.016378 PubMedCentralPubMedGoogle Scholar
  14. Cartwright JHE, Piro O, Tuval I (2009) Fluid dynamics in developmental biology: moving fluids that shape ontogeny. HFSP J 3:77–93. doi: 10.2976/1.3043738 PubMedCentralPubMedGoogle Scholar
  15. Caviston JP, Holzbaur ELF (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16:530–537. doi: 10.1016/j.tcb.2006.08.002 PubMedGoogle Scholar
  16. Deng W, Nies F, Feuer A et al (2013) Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci U S A 110:14972. doi: 10.1073/pnas.1220884110 PubMedCentralPubMedGoogle Scholar
  17. Desclozeaux M, Venturato J, Wylie FG et al (2008) Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 295:C545–C556. doi: 10.1152/ajpcell.00097.2008 PubMedGoogle Scholar
  18. Devarajan P, Stabach PR, De Matteis MA, Morrow JS (1997) Na, K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci U S A 94:10711–10716. doi: 10.1073/pnas.94.20.10711 PubMedCentralPubMedGoogle Scholar
  19. Dong B, Deng W, Jiang D (2011) Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis. Development 138:1631–1641. doi: 10.1242/dev.057208 PubMedGoogle Scholar
  20. Dong B, Horie T, Denker E et al (2009) Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol 330:237–249. doi: 10.1016/j.ydbio.2009.03.015 PubMedCentralPubMedGoogle Scholar
  21. Farooqui S, Pellegrino MW, Rimann I et al (2012) Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans. Dev Cell 23:494–506. doi: 10.1016/j.devcel.2012.06.019 PubMedGoogle Scholar
  22. Fox RM, Hanlon CD, Andrew DJ (2010) The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity. J Cell Biol 191:479–492. doi: 10.1083/jcb.201004062 PubMedCentralPubMedGoogle Scholar
  23. Förster D, Armbruster K, Luschnig S (2010) Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr Biol 20:62–68. doi: 10.1016/j.cub.2009.11.062 PubMedGoogle Scholar
  24. Förster D, Luschnig S (2012) Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol 14:526–534. doi: 10.1038/ncb2456 PubMedGoogle Scholar
  25. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200. doi: 10.1242/jcs.023820 PubMedCentralPubMedGoogle Scholar
  26. Fujita H, Hamazaki Y, Noda Y et al (2012) Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7:e52272. doi: 10.1371/journal.pone.0052272 PubMedCentralPubMedGoogle Scholar
  27. Furuse M, Hata M, Furuse K et al (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111. doi: 10.1083/jcb.200110122 PubMedCentralPubMedGoogle Scholar
  28. Ghabrial AS, Levi BP, Krasnow MA (2011) A systematic screen for tube morphogenesis and branching genes in the Drosophila tracheal system. PLoS Genet 7:e1002087. doi: 10.1371/journal.pgen.1002087 PubMedCentralPubMedGoogle Scholar
  29. Grieder NC, Caussinus E, Parker DS et al (2008) GammaCOP is required for apical protein secretion and epithelial morphogenesis in Drosophila melanogaster. PLoS One 3:e3241. doi: 10.1371/journal.pone.0003241 PubMedCentralPubMedGoogle Scholar
  30. Gutzman JH, Sive H (2010) Epithelial relaxation mediated by the myosin phosphatase regulator Mypt1 is required for brain ventricle lumen expansion and hindbrain morphogenesis. Development 137:795–804. doi: 10.1242/dev.042705 PubMedCentralPubMedGoogle Scholar
  31. Haigo SL, Hildebrand JD, Harland RM, Wallingford JB (2003) Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol 13:2125–2137PubMedGoogle Scholar
  32. Helker CSM, Schuermann A, Karpanen T et al (2013) The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 140:2776–2786. doi: 10.1242/dev.091876 PubMedGoogle Scholar
  33. Herbert SP, Huisken J, Kim TN et al (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326:294–298. doi: 10.1126/science.1178577 PubMedCentralPubMedGoogle Scholar
  34. Herwig L, Blum Y, Krudewig A et al (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21:1942–1948. doi: 10.1016/j.cub.2011.10.016 PubMedGoogle Scholar
  35. Hogan BLM, Kolodziej PA (2002) Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 3:513–523. doi: 10.1038/nrg840 PubMedGoogle Scholar
  36. Horne-Badovinac S, Lin D, Waldron S et al (2001) Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol 11:1492–1502PubMedGoogle Scholar
  37. Hou J, Renigunta A, Yang J, Waldegger S (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci U S A 107:18010–18015. doi: 10.1073/pnas.1009399107 PubMedCentralPubMedGoogle Scholar
  38. Husain N, Pellikka M, Hong H et al (2006) The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 11:483–493. doi: 10.1016/j.devcel.2006.08.012 PubMedGoogle Scholar
  39. Jaskoll T, Melnick M (1999) Submandibular gland morphogenesis: stage-specific expression of TGF-alpha/EGF, IGF, TGF-beta, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-beta2, TGF-beta3, and EGF-r null mutations. Anat Rec 256:252–268PubMedGoogle Scholar
  40. Jayaram SA, Senti K-A, Tiklová K et al (2008) COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS One 3:e1964. doi: 10.1371/journal.pone.0001964 PubMedCentralPubMedGoogle Scholar
  41. Kamei M, Saunders WB, Bayless KJ et al (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456. doi: 10.1038/nature04923 PubMedGoogle Scholar
  42. Kerman BE, Cheshire AM, Myat MM, Andrew DJ (2008) Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev Biol 320:278–288. doi: 10.1016/j.ydbio.2008.05.541 PubMedCentralPubMedGoogle Scholar
  43. Kesavan G, Sand FW, Greiner TU et al (2009) Cdc42-mediated tubulogenesis controls cell specification. Cell 139:791–801. doi: 10.1016/j.cell.2009.08.049 PubMedGoogle Scholar
  44. Khan LA, Zhang H, Abraham N et al (2013) Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol 15:143–156. doi: 10.1038/ncb2656 PubMedCentralPubMedGoogle Scholar
  45. Kim HY, Varner VD, Nelson CM (2013) Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 140:3146. doi: 10.1242/dev.093682 PubMedCentralPubMedGoogle Scholar
  46. Knox J, Moyer K, Yacoub N et al (2011) Syndecan contributes to heart cell specification and lumen formation during Drosophila cardiogenesis. Dev Biol 356:279–290. doi: 10.1016/j.ydbio.2011.04.006 PubMedGoogle Scholar
  47. Kolotuev I, Hyenne V, Schwab Y et al (2013) A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation. Nat Cell Biol 15:157–168. doi: 10.1038/ncb2662 PubMedGoogle Scholar
  48. Kučera T, Strilić B, Regener K et al (2009) Ancestral vascular lumen formation via basal cell surfaces. PLoS One 4:e4132. doi: 10.1371/journal.pone.0004132 PubMedCentralPubMedGoogle Scholar
  49. Laprise P, Paul SM, Boulanger J et al (2010) Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol 20:55–61. doi: 10.1016/j.cub.2009.11.017 PubMedCentralPubMedGoogle Scholar
  50. Lee C, Scherr HM, Wallingford JB (2007) Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134:1431–1441. doi: 10.1242/dev.02828 PubMedGoogle Scholar
  51. Lei L, Liu D, Huang Y et al (2008) Endothelial expression of beta1 integrin is required for embryonic vascular patterning and postnatal vascular remodeling. Mol Cell Biol 28:794–802. doi: 10.1128/MCB. 00443-07 PubMedCentralPubMedGoogle Scholar
  52. Letizia A, Sotillos S, Campuzano S, Llimargas M (2011) Regulated Crb accumulation controls apical constriction and invagination in Drosophila tracheal cells. J Cell Sci 124:240–251. doi: 10.1242/jcs.073601 PubMedGoogle Scholar
  53. Levi BP, Ghabrial AS, Krasnow MA (2006) Drosophila talin and integrin genes are required for maintenance of tracheal terminal branches and luminal organization. Development 133:2383–2393. doi: 10.1242/dev.02404 PubMedGoogle Scholar
  54. Lowery LA, Sive H (2005) Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132:2057–2067. doi: 10.1242/dev.01791 PubMedGoogle Scholar
  55. Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28. doi: 10.1016/S0092-8674(02)01283-7 PubMedGoogle Scholar
  56. Luschnig S, Bätz T, Armbruster K, Krasnow MA (2006) serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194. doi: 10.1016/j.cub.2005.11.072 PubMedGoogle Scholar
  57. Luschnig S, Uv A (2013) Luminal matrices: an inside view on organ morphogenesis. Exp Cell Res 321:64. doi: 10.1016/j.yexcr.2013.09.010 PubMedGoogle Scholar
  58. Mailleux AA, Overholtzer M, Schmelzle T et al (2007) BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 12:221–234. doi: 10.1016/j.devcel.2006.12.003 PubMedCentralPubMedGoogle Scholar
  59. Malicki J, Driever W (1999) oko meduzy mutations affect neuronal patterning in the zebrafish retina and reveal cell-cell interactions of the retinal neuroepithelial sheet. Development 126:1235–1246PubMedGoogle Scholar
  60. Massarwa R, Schejter ED, Shilo B-Z (2009) Apical secretion in epithelial tubes of the Drosophila embryo is directed by the Formin-family protein Diaphanous. Dev Cell 16:877–888. doi: 10.1016/j.devcel.2009.04.010 PubMedGoogle Scholar
  61. Melnick M, Jaskoll T (2000) Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med 11:199–215PubMedGoogle Scholar
  62. Moriwaki K, Tsukita S, Furuse M (2007) Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev Biol 312:509–522. doi: 10.1016/j.ydbio.2007.09.049 PubMedGoogle Scholar
  63. Munson C, Huisken J, Bit-Avragim N et al (2008) Regulation of neurocoel morphogenesis by Pard6 gamma b. Dev Biol 324:41–54. doi: 10.1016/j.ydbio.2008.08.033 PubMedCentralPubMedGoogle Scholar
  64. Muto S, Hata M, Taniguchi J et al (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107:8011–8016. doi: 10.1073/pnas.0912901107 PubMedCentralPubMedGoogle Scholar
  65. Myat MM, Andrew DJ (2000) Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia. Development 127:679–691PubMedGoogle Scholar
  66. Myat MM, Andrew DJ (2002) Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell 111:879–891PubMedGoogle Scholar
  67. Navis A, Marjoram L, Bagnat M (2013) Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish. Development 140:1703–1712. doi: 10.1242/dev.091819 PubMedCentralPubMedGoogle Scholar
  68. Nedvetsky PI, Emmerson E, Finley JK et al (2014) Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell 30:449–462. doi: 10.1016/j.devcel.2014.06.012 PubMedGoogle Scholar
  69. Nelson KS, Furuse M, Beitel GJ (2010) The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics 185:831–839. doi: 10.1534/genetics.110.114959 PubMedCentralPubMedGoogle Scholar
  70. Nelson KS, Khan Z, Molnár I et al (2012) Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol 14:518–525. doi: 10.1038/ncb2467 PubMedCentralPubMedGoogle Scholar
  71. Omori Y, Malicki J (2006) oko meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr Biol 16:945–957. doi: 10.1016/j.cub.2006.03.058 PubMedGoogle Scholar
  72. Paul SM, Palladino MJ, Beitel GJ (2007) A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134:147–155. doi: 10.1242/dev.02710 PubMedCentralPubMedGoogle Scholar
  73. Paul SM, Ternet M, Salvaterra PM, Beitel GJ (2003) The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130:4963–4974. doi: 10.1242/dev.00691 PubMedGoogle Scholar
  74. Pirraglia C, Walters J, Myat MM (2010) Pak1 control of E-cadherin endocytosis regulates salivary gland lumen size and shape. Development 137:4177–4189. doi: 10.1242/dev.048827 PubMedCentralPubMedGoogle Scholar
  75. Rajasekaran SA, Palmer LG, Moon SY et al (2001) Na, K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol Biol Cell 12:3717–3732. doi: 10.1091/mbc.12.12.3717 PubMedCentralPubMedGoogle Scholar
  76. Rajasekaran SA, Rajasekaran AK (2009) Na, K-ATPase and epithelial tight junctions. Front Biosci 14:2130–2148Google Scholar
  77. Rasmussen JP, Reddy SS, Priess JR (2012) Laminin is required to orient epithelial polarity in the C. elegans pharynx. Development 139:2050–2060. doi: 10.1242/dev.078360 PubMedCentralPubMedGoogle Scholar
  78. Rousso T, Shewan AM, Mostov KE et al (2013) Apical targeting of the formin Diaphanous in Drosophila tubular epithelia. Elife 2:e00666. doi: 10.7554/eLife.00666 PubMedCentralPubMedGoogle Scholar
  79. Röper K (2012) Anisotropy of Crumbs and aPKC drives myosin cable assembly during tube formation. Dev Cell 23:939–953. doi: 10.1016/j.devcel.2012.09.013 PubMedCentralPubMedGoogle Scholar
  80. Santiago-Martínez E, Soplop NH, Patel R, Kramer SG (2008) Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J Cell Biol 182:241–248. doi: 10.1083/jcb.200804120 PubMedCentralPubMedGoogle Scholar
  81. Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6:855–864. doi: 10.1016/j.devcel.2004.05.007 PubMedGoogle Scholar
  82. Sawyer JM, Harrell JR, Shemer G et al (2010) Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol 341:5–19. doi: 10.1016/j.ydbio.2009.09.009 PubMedCentralPubMedGoogle Scholar
  83. Schlüter MA, Margolis B (2012) Apicobasal polarity in the kidney. Exp Cell Res 318:1033–1039. doi: 10.1016/j.yexcr.2012.02.028 PubMedCentralPubMedGoogle Scholar
  84. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228. doi: 10.1152/ajpcell.00558.2003 PubMedGoogle Scholar
  85. Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964. doi: 10.1242/jcs.01596 PubMedGoogle Scholar
  86. Shafaq-Zadah M, Brocard L, Solari F, Michaux G (2012) AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 139:2061–2070. doi: 10.1242/dev.076711 PubMedGoogle Scholar
  87. Shaye DD, Casanova J, Llimargas M (2008) Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol 10:964–970. doi: 10.1038/ncb1756 PubMedGoogle Scholar
  88. Strilić B, Eglinger J, Krieg M et al (2010) Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol 20:2003–2009. doi: 10.1016/j.cub.2010.09.061 PubMedGoogle Scholar
  89. Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987. doi: 10.1242/jcs.02898 PubMedGoogle Scholar
  90. Syed ZA, Bougé A-L, Byri S et al (2012) A luminal glycoprotein drives dose-dependent diameter expansion of the Drosophila melanogaster hindgut tube. PLoS Genet 8:e1002850. doi: 10.1371/journal.pgen.1002850 PubMedCentralPubMedGoogle Scholar
  91. Tang N, Marshall WF, McMahon M et al (2011) Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science 333:342–345. doi: 10.1126/science.1204831 PubMedCentralPubMedGoogle Scholar
  92. Tawk M, Araya C, Lyons DA et al (2007) A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature 446:797–800. doi: 10.1038/nature05722 PubMedGoogle Scholar
  93. Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28:655–685. doi: 10.1146/annurev-cellbio-092910-154033 PubMedGoogle Scholar
  94. Tepass U, Theres C, Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61:787–799PubMedGoogle Scholar
  95. Tiklová K, Tsarouhas V, Samakovlis C (2013) Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila. PLoS One 8:e67415. doi: 10.1371/journal.pone.0067415 PubMedCentralPubMedGoogle Scholar
  96. Tsarouhas V, Senti K-A, Jayaram SA et al (2007) Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev Cell 13:214–225. doi: 10.1016/j.devcel.2007.06.008 PubMedGoogle Scholar
  97. Tucker AS (2007) Salivary gland development. Semin Cell Dev Biol 18:237–244. doi: 10.1016/j.semcdb.2007.01.006 PubMedGoogle Scholar
  98. Urbano JM, Torgler CN, Molnar C et al (2009) Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development 136:4165–4176. doi: 10.1242/dev.044263 PubMedCentralPubMedGoogle Scholar
  99. Uv A, Cantera R, Samakovlis C (2003) Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol 13:301–309PubMedGoogle Scholar
  100. Van Fürden D, Johnson K, Segbert C, Bossinger O (2004) The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev Biol 272:262–276. doi: 10.1016/j.ydbio.2004.05.012 PubMedGoogle Scholar
  101. Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327. doi: 10.1172/JCI12464 PubMedCentralPubMedGoogle Scholar
  102. Veikkolainen V, Naillat F, Railo A et al (2012) ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. J Am Soc Nephrol 23:112–122. doi: 10.1681/ASN.2011020160 PubMedCentralPubMedGoogle Scholar
  103. Wan H, Liu C, Wert SE et al (2013) CDC42 is required for structural patterning of the lung during development. Dev Biol 374:46–57. doi: 10.1016/j.ydbio.2012.11.030 PubMedCentralPubMedGoogle Scholar
  104. Wang S, Jayaram SA, Hemphälä J et al (2006) Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the drosophila trachea. Curr Biol 16:180–185. doi: 10.1016/j.cub.2005.11.074 PubMedGoogle Scholar
  105. Wang Y, Kaiser MS, Larson JD et al (2010) Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137:3119–3128. doi: 10.1242/dev.048785 PubMedCentralPubMedGoogle Scholar
  106. Wu VM, Schulte J, Hirschi A et al (2004) Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 164:313–323. doi: 10.1083/jcb.200309134 PubMedCentralPubMedGoogle Scholar
  107. Xiao K (2003) Mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells. J Biol Chem 278:19199–19208. doi: 10.1074/jbc.M211746200 PubMedGoogle Scholar
  108. Xu K, Sacharidou A, Fu S et al (2011a) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20:526–539. doi: 10.1016/j.devcel.2011.02.010 PubMedCentralPubMedGoogle Scholar
  109. Xu N, Bagumian G, Galiano M, Myat MM (2011b) Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin. Development 138:5415–5427. doi: 10.1242/dev.069831 PubMedCentralPubMedGoogle Scholar
  110. Yang Z, Zimmerman S, Brakeman PR et al (2013) De novo lumen formation and elongation in the developing nephron: a central role for afadin in apical polarity. Development 140:1774–1784. doi: 10.1242/dev.087957 PubMedCentralPubMedGoogle Scholar
  111. Yeaman C, Grindstaff KK, Nelson WJ (1999) New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 79:73–98PubMedGoogle Scholar
  112. Yu W, Datta A, Leroy P et al (2005) Beta1-integrin orients epithelial polarity via Rac1 and laminin. Mol Biol Cell 16:433–445. doi: 10.1091/mbc.E04-05-0435 PubMedCentralPubMedGoogle Scholar
  113. Zhang H, Abraham N, Khan LA et al (2011) Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13:1189–1201. doi: 10.1038/ncb2328 PubMedCentralPubMedGoogle Scholar
  114. Zhang H, Kim A, Abraham N et al (2012) Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development 139:2071–2083. doi: 10.1242/dev.077347 PubMedCentralPubMedGoogle Scholar
  115. Zhang J, Piontek J, Wolburg H et al (2010) Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A 107:1425–1430. doi: 10.1073/pnas.0911996107 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Cell BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations