Advertisement

The Influence of Differential Diffusion in Turbulent Oxygen Enhanced Methane Flames

  • F. DietzschEmail author
  • C. Hasse
  • G. Fru
  • D. Thévenin
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

For conventional combustion processes one of the most common oxidizers is air, mainly because it is cheap and readily available compared to other oxidizers.

Keywords

Diffusion Flame Turbulent Flame Laminar Flame Differential Diffusion Elemental Mass Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baukal, C.E.: Oxygen-enhanced combustion. CRC. (1998)Google Scholar
  2. 2.
    Andersson, K., Johansson, R., Johnsson, F.: Thermal radiation in oxy-fuel flames. Int. J. Greenhouse Gas Control 5, S58–S65 (2011)CrossRefGoogle Scholar
  3. 3.
    Krishnan, S.S., Saini, M.K., Zheng, Y., Gore, J.P.: Radiation properties of oxygen-enhanced normal and inverse diffusion flames. J. Heat Transfer 134(2), 022701 (2012)CrossRefGoogle Scholar
  4. 4.
    Krishnamoorthy, G., Sami, M., Orsino, S., Perera, A., Shahnam, M., Huckaby, E.D.: Radiation modelling in oxy-fuel combustion scenarios. Int. J. Comput. Fluid Dyn. 24, 69–82 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Sung, C.J., Law, C.K.: Dominant chemistry and physical factors affecting no formation and control in oxy-fuel burning. Proc. Combust. Inst. 27(1), 1411–1418 (1998)CrossRefGoogle Scholar
  6. 6.
    Cheng, Z., Wehrmeyer, J.A., Pitz, R.W.: Experimental and numerical studies of opposed jet oxygen-enhanced methane diffusion flames. Combust. Sci. Technol. 178(12), 2145–2163 (2006)CrossRefGoogle Scholar
  7. 7.
    Edge, P., Gubba, S.R., Ma, L., Porter, R., Pourkashanian, M., Williams, A.: LES modelling of air and oxy-fuel pulverised coal combustion-impact on flame properties. Proc. Combust. Inst. 33(2), 2709–2716 (2011)CrossRefGoogle Scholar
  8. 8.
    Kim, H.K., Kim, Y., Lee, S.M., Ahn, K.Y.: Studies on combustion characteristics and flame length of turbulent oxy-fuel flames. Energy Fuels 21(3), 1459–1467 (2007)CrossRefGoogle Scholar
  9. 9.
    Ern, A., Giovangigli, V.: Fast and accurate multicomponent transport property evaluation. J. Comput. Phys. 120, 105–116 (1995)Google Scholar
  10. 10.
    Hirschfelder, J.O., Bird, R.B., Curtiss, C.F.: The Molecular Theory of Gases and Liquids. Wiley, Hoboken (1954)Google Scholar
  11. 11.
    Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A., Moffat, H.K.: A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties. Sandia National Laboratories Report SAND86-8246B (1988)Google Scholar
  12. 12.
    Ern, A., Giovangigli EGLIB, V.: A general-purpose fortran library for multicomponent transport property evaluation. User manual version 3.4 (2004)Google Scholar
  13. 13.
    Laverdant, A.: Notice dutilisation du programme SIDER (PARCOMB3D). Technical Report RT 2/13635 DEFA, The French Aerospace Lab., ONERA (2008)Google Scholar
  14. 14.
    Thévenin, D., Behrendt, F., Maas, U., Przywara, B., Warnatz, J.: Development of a parallel direct simulation code to investigate reactive flows. Comput. Fluids 25(5), 485–496 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201(2), 531–545 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Baum, M., Poinsot, T., Thévenin, D.: Accurate boundary-conditions for multicomponent reactive flows. J. Comput. Phys. 116(2), 247–261 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. (ISSN 0021–9991), 101, 104–129 (1992)Google Scholar
  18. 18.
    Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lindstedt, R.P., Meyer, M.P.: A dimensionally reduced reaction mechanism for methanol oxidation. Proc. Combust. Inst. 29(1), 1395–1402 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.TU Bergakademie FreibergChair of Numerical Thermo-Fluid DynamicsFreibergGermany
  2. 2.Institute of Fluid Dynamics and ThermodynamicsOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations