Advertisement

Simulation and Modeling of Turbulent Jet Noise

  • T. Colonius
  • A. Sinha
  • D. Rodríguez
  • A. Towne
  • J. Liu
  • G. A. Brès
  • D. Appelö
  • T. Hagstrom
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

Jet noise reduction remains an important long-range goal in commercial and military aviation.

Keywords

Large Eddy Simulation Proper Orthogonal Decomposition Linear Stability Theory Active Noise Control Parabolized Stability Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jordan, P., Colonius, T.: Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173–195 (2013)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cavalieri, A.V.G., Jordan, P., Colonius, T., Gervais, Y.: Wavepackets in the velocity field of turbulent jets. AIAA Paper 2012–2115 (2012)Google Scholar
  3. 3.
    Gudmundsson, K., Colonius, T.: Instability wave models for the near field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Brès, G.A., Nichols, J.W., Lele, S.K., Ham, F.E.: Towards best practices for jet noise predictions with unstructured large eddy simulations. AIAA Paper 2012–2965 (2012)Google Scholar
  5. 5.
    Rodríguez, D., Sinha, A., Brès, G.A., Colonius, T.: Parabolized stability equation models in turbulent supersonic jets. AIAA Paper 2012–2117 (2012)Google Scholar
  6. 6.
    Rodríguez, D., Sinha, A., Brès, G.A., Colonius, T.: Acoustic field associated with parabolized stability equation models in turbulent jets. AIAA Paper 2013–2279 (2013)Google Scholar
  7. 7.
    Herbert, T.: Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Li, F., Malik, M.R.: On the nature of pse approximation. Theor. Comput. Fluid Dyn. 8, 253–273 (1996)CrossRefMATHGoogle Scholar
  9. 9.
    Towne, A., Colonius, T.: Improved parabolization of the euler equations. AIAA Paper 2013–2171 (2013)Google Scholar
  10. 10.
    Givoli, D., Neta, B.: High-order nonreflecting boundary scheme for time- dependent waves. J. Comput. Phys. 186, 24–46 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hagstrom, T., Warburton, T.: A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. Wave Motion 39, 890–901 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Appelö, D., Inkman, M., Hagstrom, T., Colonius, T.: Hermite methods for aeroacoustics: Recent progress. AIAA Paper 2011–2757 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • T. Colonius
    • 1
  • A. Sinha
    • 1
  • D. Rodríguez
    • 1
  • A. Towne
    • 1
  • J. Liu
    • 1
  • G. A. Brès
    • 2
  • D. Appelö
    • 3
  • T. Hagstrom
    • 4
  1. 1.Mechanical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Cascade Technologies Inc.Palo AltoCAUSA
  3. 3.Applied MathematicsUniversity of New MexicoAlbuquerqueUSA
  4. 4.MathematicsSouthern Methodist UniversityDallasUSA

Personalised recommendations