Online 3D Shape Segmentation by Blended Learning

  • Feiqian Zhang
  • Zhengxing Sun
  • Mofei Song
  • Xufeng Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8935)


This paper presents a novel online 3D shape segmentation framework, which blend two learning methods together: unsupervised clustering based method, and supervised progressive learning method. The features of this method lie in four aspects. Firstly, we use weighted online learning to train a segmentation model to achieve the blended learning framework. Secondly, we perform co-segmentation based on unsupervised clustering to analyze the shape set, and initialize this segmentation model. Thirdly, based on this segmentation model, users can segment new shapes by using supervised progressive learning method. And this segmentation model can also be incrementally updated by weighted online learning during the progressive segmentation. Finally, the segmentation of shapes in the initial set can be corrected based on the updated segmentation model. Experimental results demonstrate the effectiveness of our approach.


3D shape Co-segmentation Online learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schröder, P., Sweldens, W.: Digital geometry processing. In: Frontiers of Engineering: Reports on Leading-Edge Engineering From the 2000 NAE Symposium on Frontiers in Engineering, p. 41. National Academies Press (2001)Google Scholar
  2. 2.
    Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3d mesh segmentation. ACM Trans. Graph. 28(3), 73:1–73:12 (2009)Google Scholar
  3. 3.
    Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3d models. Computers and Graphics 33(3), 262–269 (2009)CrossRefGoogle Scholar
  4. 4.
    Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126:1–126:10 (2011)Google Scholar
  5. 5.
    Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. ACM Trans. Graph. 30 (6), 125:1–125:12. (2011)Google Scholar
  6. 6.
    Hu, R., Fan, L., Liu, L.: Co-segmentation of 3d shapes via subspace clustering. Computer Graphics Forum 31(5), 1703–1713 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. ACM Trans. Graph. 31(6), 165 (2012)CrossRefGoogle Scholar
  8. 8.
    Meng, M., Xia, J., Luo, J., He, Y.: Unsupervised co-segmentation for 3d shapes using iterative multi-label optimization. Comput. Aided Des. 45(2), 312–320 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Luo, P., Wu, Z., Xia, C., Feng, L., Ma, T.: Co-segmentation of 3d shapes via multi-view spectral clustering. The Visual Computer 29(6-8), 587–597 (2013)CrossRefGoogle Scholar
  10. 10.
    Wu, Z., Wang, Y., Shou, R., Chen, B., Liu, X.: Unsupervised co-segmentation of 3d shapes via affinity aggregation spectral clustering. Computers and Graphics 37(6), 628–637 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhang, F.Q., Sun, Z.X., Song, M.F., Lang, X.F., Yan, H.: 3d shapes co-segmentation by combining fuzzy c-means with random walks. In: Proceedings of 13th International Conference on Computer-Aided Design and Computer Graphics, pp. 16–23. IEEE Press, Hong Kong (2013)Google Scholar
  12. 12.
    Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S., Funkhouser, T.: Learning part-based templates from large collections of 3d shapes. ACM Trans. Graph. 32(4), 70:1–70:12 (2013)Google Scholar
  13. 13.
    Lv, J., Chen, X., Huang, J., Bao, H.: Semi-supervised mesh segmentation and labeling. Computer Graphics Forum 31(7), 2241–2248 (2012)CrossRefGoogle Scholar
  14. 14.
    Wu, Z., Shou, R., Wang, Y., Liu, X.: Interactive shape co-segmentation via label propagation. Computers and Graphics 38, 248–254 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhang, F.Q., Sun, Z.X., Song, M.F., Lang, X.F.: Progressive 3D shape segmentation using online learning. Computer-Aided Design 58, 2–12 (2015)CrossRefGoogle Scholar
  16. 16.
    Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3d mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)Google Scholar
  17. 17.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)CrossRefGoogle Scholar
  18. 18.
    Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3d objects. Int. J. Comput. Vision. 89(2-3), 309–326 (2010)CrossRefGoogle Scholar
  19. 19.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 203–212. ACM Press, New York (2001)Google Scholar
  20. 20.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  21. 21.
    Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests. In: 2009 IEEE 12th International Conference on Computer VisionWorkshops (ICCV Workshops), pp. 1393–1400. IEEE Press, Kyoto (2009)CrossRefGoogle Scholar
  22. 22.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Feiqian Zhang
    • 1
  • Zhengxing Sun
    • 1
  • Mofei Song
    • 1
  • Xufeng Lang
    • 1
  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityP.R. China

Personalised recommendations