Promoters and Inhibitors in Purely Catalytic P Systems

  • Artiom Alhazov
  • Rudolf FreundEmail author
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8961)


We consider purely catalytic P systems with two catalysts together with promoters and inhibitors on the rules. We show that computational completeness can be achieved in a deterministic way by using atomic promoters or sets of atomic inhibitors. By using atomic inhibitors computational completeness is achieved only with a non-deterministic construction.


  1. 1.
    Alhazov, A., Freund, R.: Asynchronous and Maximally Parallel Deterministic Controlled Non-cooperative P Systems Characterize NFIN and coNFIN. In: Martínez-del-Amor, M.Á., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.): The Tenth Brainstorming Week in Membrane Computing, vol. 1, pp. 25–34. Fénix Editora, Sevilla (2012), and in: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 101–111. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Alhazov, A., Freund, R.: Priorities, Promoters and Inhibitors in Deterministic Non-Cooperative P Systems. In: Macías-Ramos, L.F., Martínez-del-Amor, M.Á., Păun, Gh., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the Twelfth Brainstorming Week on Membrane Computing, pp. 27–36. Fénix Editora, Sevilla (2014)Google Scholar
  3. 3.
    Alhazov, A., Sburlan, D.: Ultimately Confluent Rewriting Systems. Parallel Multiset–Rewriting with Permitting or Forbidding Contexts. In: Mauri, G., Păun, Gh., Pérez-Jímenez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Vaszil, Gy.: P Automata or Purely Communicating Accepting P Systems. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC-CdeA 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally Universal P Systems without Priorities: Two Catalysts are Sufficient. Theoretical Computer Science 330(2), 251–266 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Freund, R., Kogler, M., Oswald, M.: A General Framework for Regulated Rewriting Based on the Applicability of Rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (Tissue) P Systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 173–188. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Freund, R., Păun, Gh.: How to Obtain Computational Completeness in P Systems with One Catalyst. In: Neary, T., Cook, M. (eds.): Proceedings Machines, Computations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11. EPTCS, vol. 128, pp. 47–61 (2013)Google Scholar
  9. 9.
    Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Ibarra, O.H., Yen, H.-C.: Deterministic Catalytic Systems are Not Universal. Theoretical Computer Science 363, 149–161 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Ionescu, M., Sburlan, D.: On P Systems with Promoters/Inhibitors. JUCS 10(5), 581–599 (2004)MathSciNetGoogle Scholar
  12. 12.
    Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  13. 13.
    Păun, Gh.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  14. 14.
    Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  15. 15.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, 3 vol. Springer (1997)Google Scholar
  16. 16.
    Sburlan, D.: Further Results on P Systems with Promoters/Pnhibitors. Int. J. Found. Comput. Sci. 17(1), 205–221 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    P systems webpage:

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of InformaticsVienna University of TechnologyViennaAustria
  3. 3.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations