Advertisement

P Systems with Active Membranes Working in Sublinear Space

  • Claudio Zandron
  • Alberto Leporati
  • Luca Manzoni
  • Giancarlo Mauri
  • Antonio E. Porreca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8961)

Abstract

P systems with active membranes are a variant of P systems where the membranes can be created during the computation by division of existing ones. Using this feature, one can create an exponential number of membranes in a polynomial time, and use them in parallel to solve computationally hard problems, such as problems in \(\mathbf{NP }\) or even in \(\mathbf{PSPACE }\). This possibility raises many interesting questions concerning the trade–off between time and space needed to solve various classes of computational problems by means of membrane systems. In this paper we concentrate on P systems with active membranes working in sublinear space, with a survey on recent research results concerning such systems.

Keywords

Turing Machine Active Membrane Input String Input Symbol Input Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity equivalence of P systems with active membranes and Turing machines. Theoretical Computer Science 529, 69–81 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Csuhaj-Varju, E., Oswald, M.: Vaszil, Gy.: P automata, Handbook of Membrane Computing. In: Păun, Gh. et al. (ed.) pp. 144–167. Oxford University Press (2010)Google Scholar
  3. 3.
    Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A Gap in the space hierarchy of P systems with active membranes. Journal of Automata, Languages and Combinatorics 19(1–4), 173–184 (2014)MathSciNetGoogle Scholar
  4. 4.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Constant-space P systems with Active Membranes, Fundamenta Informaticae (to appear)Google Scholar
  5. 5.
    Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within \({\rm {NC}}^1\). Journal of Computer and System Sciences 41(3), 274–306 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Natural Computing 10(1), 613–632 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Păun, Gh.: P systems with active membranes: Attacking NP-complete problems. J. of Automata, Languages and Combinatorics 6(1), 75–90 (2001)Google Scholar
  8. 8.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  9. 9.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity measure for P systems. Int. J. of Comp., Comm. & Control 4(3), 301–310 (2009)Google Scholar
  10. 10.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P Systems with Active Membranes: Trading Time for Space. Natural Computing 10(1), 167–182 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes working in polynomial space. Int. J. Found. Comp. Sc. 22(1), 65–73 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Porreca, A.E., Mauri, G., Zandron, C.: Complexity classes for membrane systems. RAIRO-Theor. Inform. and Applic. 40(2), 141–162 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-Space P systems with Active Membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Claudio Zandron
    • 1
  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  • Antonio E. Porreca
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations