Advertisement

Small Universal Spiking Neural P Systems with Cooperating Rules as Function Computing Devices

  • Venkata Padmavati MettaEmail author
  • Srinivasan Raghuraman
  • Kamala Krithivasan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8961)

Abstract

The paper considers spiking neural P systems (SN P systems) with cooperating rules where each neuron has the same number of sets of rules, labelled identically. Each set is called a component (maybe empty). At each step only one of the components can be active for the whole system, and only the rules from the active component are enabled. Each neuron with enabled rules from this active component can fire. By using 59 neurons, a small universal SN P system with two components, working in the terminating mode, is constructed for computing functions.

Keywords

Spike Train Output Neuron Input Neuron Target Neuron Register Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csuhaj-Varju, E., Dassow, J.: On cooperating/distributed grammar systems. Journal of Information Processing and Cybernetics (EIK) 26, 49–63 (1990)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71, 279–308 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Korec, I.: Small universal register machines. Theoretical Computer Science 168, 267–301 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Metta, V.P., Kelemenová, A.: Smaller universal spiking neural P systems with anti-spikes. Journal of Automata, Languages and Combinatorics 19(1–4), 213–226 (2014)Google Scholar
  5. 5.
    Metta, V.P., Raghuraman, S., Krithivasan, K.: Spiking neural P systems with cooperating rules. In: Proc. of Conference on Membrane Computing (CMC 15), Prague, Czech Republic, pp. 267–282 (2014)Google Scholar
  6. 6.
    Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  7. 7.
    Neary, T.: A boundary between universality and non-universality in extended spiking neural P systems. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 475–487. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Pan, L., Zeng, X.: A note on small universal spiking neural P systems. In: Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 436–447. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Pan, L., Zeng, X.: Small universal spiking neural P systems working in exhaustive mode. IEEE Transactions on Nano-Bioscience 10(2), 99–105 (2011)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Pan, L., Zeng, X., Zhang, X.: Small asynchronous universal spiking neural P systems. In: Proc. of IEEE Fifth International Conference on Bio-inspired Computing: Theories and Applications, pp. 622–630 (2010)Google Scholar
  11. 11.
    Păun, A., Păun, Gh.: Small universal spiking neural P systems. BioSystems 90(1), 48–60 (2007)CrossRefGoogle Scholar
  12. 12.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  13. 13.
    Păun, A., Sidoroff, M.: Sequentiality induced by spike number in SN P systems: small universal machines. In: Gheorghe, M., Păun, Gh., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 333–345. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vol. Springer, Berlin (1997)Google Scholar
  15. 15.
    Song, T., Pan, L.: A small universal spiking neural P system with cooperating rules as number generator. In: Proc. of Asian Conference on Membrane Computing (ACMC 2014), Coimbatore, India, pp. 33–44 (2014)Google Scholar
  16. 16.
    Song, T., Pan, L., Păun, Gh.: Spiking neural P systems with rules on synapses. Theoretical Computer Science 529(10), 82–95 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundamenta Informaticae 87, 117–136 (2008)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Venkata Padmavati Metta
    • 1
    Email author
  • Srinivasan Raghuraman
    • 2
  • Kamala Krithivasan
    • 2
  1. 1.Institute of Computer Science and Research Institute of the IT4Innovations Centre of ExcellenceSilesian University in OpavaOpavaCzech Republic
  2. 2.Indian Institute of TechnologyChennaiIndia

Personalised recommendations